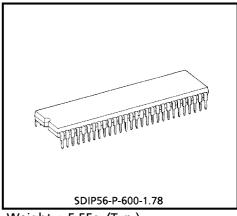
TOSHIBA **TA1276AN**

TENTATIVE

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA1276AN

PAL/NTSC VIDEO CHROMA AND DEFLECTION IC FOR CTV (NORMAL SCAN/DOUBLE SCAN MODE)

TA1276AN provides Video, Chroma and Deflection (Sync, when double scan mode) circuit for a PAL/NTSC Color TV, and suitable for a high picture quality, large screen size, wide and/or double scanning TV. These functions are integrated in a 56pin dual-in-line shrink-type plastic package.

TA1276AN provides a high-performance video processor in which a YUV double scanning signal can be applied in Video, PAL/NTSC auto-detection circuit in Chroma and 50 /60Hz auto-detection circuit in Sync. PAL demodulation circuit includes Baseband signal processing system. And this demodulation circuit does not required any adjustment.

TA1276AN includes I²C bus interface, so you can adjust various functions and controls via the bus.

Weight: 5.55g (Typ.)

The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

The products described in this document are subject to foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice. TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor

TOSHIBA TA1276AN

FEATURES

Video / Chroma section

- Y delay line
- Chroma trap
- IQ demodulation for NTSC, UV demodulation for PAL

BEP (Back End Processor) section

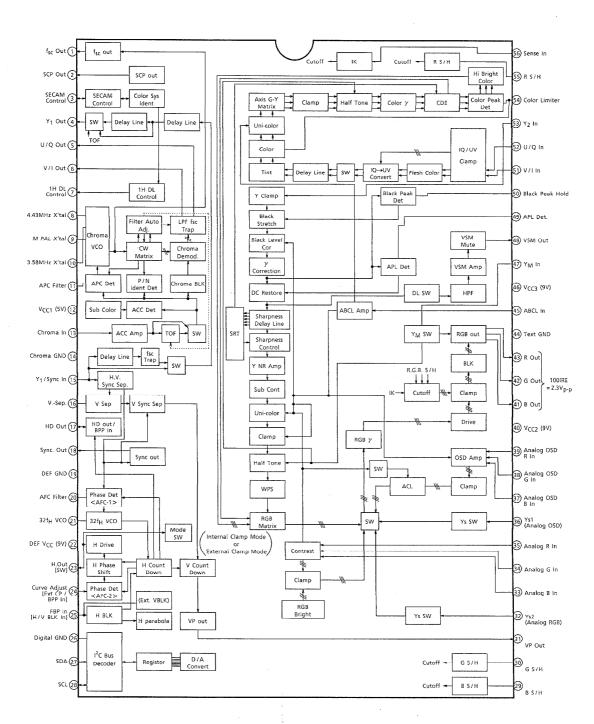
- Enable to process a YUV signal independently
- Double scanning signal processing capability

(Y processing section)

- Black Stretcher (Controlled by I²C bus)
- DC Restoration Circuit (Controlled by I²C bus)
- Highbright-color Circuit
- D.L. Aperture Sharpness Circuit + Super Real Transcend Circuit (LTI)
- ullet γ Correction (Enable to control Binary line, Gain/Start point)
- Y noise reduction circuit
- Velocity Scan Modulation output (The first order differential output and phase/amplitude adjustment)

(Color difference section)

- Color Detail Enhancer
- Selectable relative phase and amplitude
- Flesh-color restoration
- Color γ circuit
- Baseband tint color


(Text section)

- RGB primary color output
- On Screen Display interface
- Linear RGB interface
- Fast Blanking
- Drive control
- AKB (only black level) or Cut-off Bus control

Deflection section

- High Performance Sync. Separation Circuit
- Adjustment free H and V oscillation circuit by Countdown system
- Horizontal and Vertical position adjustment
- Sync separation, HD output
- Horizontal and Vertical pulse output in normal mode

BLOCK DIAGRAM

• Pin 23 connect to V_{CC}: Double Scan mode (Note) []: for Double Scan mode only (External clamping pulse input mode)

TA1276AN - 3

TERMINAL FUNCTIONS

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
1	f _{sc} output	Outputs oscillation waveform of VCXO. When 3.58NTSC killer-off this pin voltage sets 3.2V. When B/W or other systems killer-off, this pin voltage sets 1.4V.	12 200Ω 4 E	DC 3.58NTSC : 3.2V B/W or Others system : 1.4V AC 0.6V _{p-p}
2	SCP output	Outputs SCP (Sand Castle Pulse). The output signal consists of clamp pulse, horizontal blanking pulse, and vertical blanking. The minimum load resistance is $3k\Omega$.	200Ω 200Ω 200Ω 200Ω 200Ω	8.3V 4.8V 4.8V GND
3	SECAM control	The input/output pin that is used to control the SECAM demodulation IC. When current stronger than 250 μ A flows from this pin, that is recognized as SECAM.	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	When PAL/NTSC 4.0V When SECAM 0.75V
4	Y1 output	Outputs the Y signal that routed the f _{sc} TRAP (TRAP can be turned on or off with Bus.) and the Y delay line circuit.	4 300Ω 4 4 E	1V _{p-p}
5	U/Q output	Outputs B-Y (U) or I signal. It includes LPF that can remove carrier.	400 µF 1kΩ 1kΩ 30kΩ (C)	DC 2.5V Rainbow color bar : 360mV _{p-p}

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
6	V/I output	Outputs R-Y (V) or Q signal. It includes LPF that can remove carrier. The chroma signal that routed ACC and TOF circuits (before demo input) can be monitored by pulling up this pin at $10k\Omega$.	400 μF 1kΩ 30kΩ (E)	DC 2.5V Rainbow color bar : 360mV _{p-p}
7	1H DL control	Outputs the result of whether the signal is PAL, SECAM or NTSC. Connect the output to the 1H DL IC. In the case of discrimination between white or black, the voltage just before that is retained. The voltage immediately after turning-on is not fixed.	7 Cyky Cyky 7 C	8.4V : PAL 4.3V : SECAM 0V : NTSC
9	4.43MHz X'tal M PAL X'tal 3.58MHz X'tal	Connect X'tal. In the case of series capacity, the oscillation frequency (f ₀) can be changed. In the case of parallel capacity, the changeable range of frequency can be changed.	8 9 1.5kΩ Pin 8 1.5kΩ Pin 9 2.5kΩ Pin 10 2.5kΩ	DC 4.0V 90mV _{p-p}
11	APC filter	Connect APC filter demodulating the chroma. The oscillation frequency of VCXO varies depending on the voltage at this pin.		DC
12	V _{CC1} (5V)	The V _{CC} of the chroma and I ² C Bus blocks. Connect 5V (Typ.)	_	_

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
13	Chroma input	The pin through which the chroma is input. Input the chroma signal that was subjected to Y/C separation.	(3) (1) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	Burst level : 300mV _{p-p}
14	Chroma GND	The GND pin of the chroma processing block.	_	_
15	Y1/SYNC input	The pin through which the composite video signal or Y signal is input. Input via clamp capacitor.	13 (S)	1V _{p-p} 2.5V GND
16	V-Sep.	Connect the filter separating the vertical synchronization.	(22) (16) (16) (22)	DC 6.4V
17	HD output	 (1) When BUS HD-OUT = 0 Output the HD pulse (pulse duration : 1μs) together with AFC. This pin also serves as the external input pin that accepts BPP (black peak detection stopping pulse) signal. (2) When BUS HD-OUT = 1 When AKB mode is ON, the pulse which covers AKB reference period is output. 	200Ω Ext.BPP 200Ω HD	(1) HD SV Ext BPP OV BPP TH: 1.0V (2) 5V OV

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
18	SYNC. output	Output the synchronizing signal that was separated in the synchronous separation circuit. This pin is of the open collector system. Connect the pull-up resistor.	(18) 200Ω (18) 200Ω	5V
19	DEF GND	The GND pin of DEF block.	-	_
20	AFC filter	Connect the filter for horizontal AFC. The frequency of the horizontal output varies depending on the voltage at this pin.	20 300Ω 30kΩ 30kΩ 30kΩ 30kΩ 30kΩ	DC
21	32fH VCO	Connect the ceramic oscillator for horizontal oscillation. The oscillator to be used is CSB503F30, made by Murata electronics.	$21 \frac{1 k \Omega}{3 k \Omega} \frac{47 k \Omega}{3 k \Omega} \frac{10 k \Omega}{3 k \Omega}$	130mV _{p-p}
22	DEF V _{CC} (9V)	The V _{CC} of DEF block. Connect 9V (Typ.) to this pin.	_	_
23	Horizontal output (Mode SW)	Produces the horizontal output. Connecting the DEF V _{CC} to this pin can swich Double Scan mode. In this case, the horizontal output is not produced.	(2) 15kΩ (3) 15kΩ (4) 15kΩ (4) 15kΩ (5) 15kΩ (6) 15kΩ (7) 15kΩ (7) 15kΩ (8) 15	HIGH : 3.2V LOW : 0.2V

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
24	Curve correction (Ext. CP/BPP input)	 (1) Used to correct distortion of picture in the case of high-tension fluctuation. Input the AC component of high-tension fluctuation. To disactivate the distortion correction feature, connect a capacitor of 0.01 μF between this pin and GND. (2) Double scan mode This pin is to input external CP (Clamping Pulse) and BPP (Black Peak detection stopping Pulse). 	45kΩ 45kΩ	(1)DC 4.5V (2) Ext. Clamp Pulse TH : 3.6V Ext. CP TH : 3.6V OV Ext BPP TH : 1.0V
25	FBP input	The pin through which FBP is input to generate pulses for horizontal AFC2, Y smoothing, and horizontal blanking. When doble SCAM mode, input H blanking pulse (5V or over).	(2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	
26	Digital GND	The GND pin of I ² L block.	_	_
27	SDA	The SDA pin of I ² C bus.	27 50Ω 20kΩ SDA ACK SDA ACK	_
28	SCL	The SCL pin of I ² C bus.	28 20kΩ SDA A A A A A A A A A A A A A A A A A A	_

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
29	B S/H G S/H	These pins are to be connected with a capacitor for sampling and holding a bais voltage in the AKB operation, of for clamping to set DC voltage of RGB outputs in the no-AKB mode.	29 30 55 29 30 55 29 30 70 1kΩ 5kΩ R/G/B R/G/B	DC
31	VP output	Outputs the vertical pulse. This pin also serves as the external blanking input. When current stronger than 350 µA flows, blanking takes place due to the internal blanking and OR logic circuit.	31	5v _{0v}
32	YS2	Switches between the internal RGB signal and analog RGB (pin 33, 34, 35) signal. When this switch is on, the VSM output is muted.	32 1.3kΩ (2) (3) (3) (3) (3) (40) (40) (40) (40) (40) (40) (40) (40	A. BGB 0.75V TV GND
33	Analog B input	The pin through which the	40 1kΩ	100IRE : 0.5V _{p-p}
34	Analog G input Analog R input	analog RGB is input. Input the RGB signal via clamp capacitor.	33 34 35 35 31 31 31 31 31 31 31 31 31 31 31 31 31	3.5V GND
36	YS1	Switches between the internal RGB signal and OSD / analog RGB (pin 37, 38, 39). When this switch is on, the VSM output is muted.	36 1.3kΩ 40	OSD 2.25V VSM Mute 0.75V TV GND

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
37 38 39	Analog OSD B input Analog OSD G input Analog OSD R input	The pin through which the OSD signal or analog RGB is input. (1) When inputting an OSD signal, input the ODS signal with a voltage of 0~5V (4.1V or more). (2) When inputting an analog RGB, input the RGB signal via clamp capacitor. ACL works on this input signal only when the entire screen is YS1-HI (the entire screen: OSD).	$\begin{array}{c} 37 \\ 1k\Omega \\ 1k\Omega \\ 38 \\ 39 \end{array}$	(1) 0V (2) 100IRE: 0.5V _{p-p} DC: 3.6V
40	V _{CC2} (9V)	The V _{CC} pin of the text block. Connect 9V (Typ.).	_	_
41 42 43	B output G output R output	Outputs RGB.	41 200Ω 10kΩ 10kΩ 10kΩ	100IRE : 2.3V _{p-p} 2.5V At Cont Max. BRT Cent.
44	TEXT GND	The GND pin of TEXT block.	_	_
45	ABCL input	Used to control the external uni-color, brightness, and dynamic ABL. Use this pin when using ABL or ACL. The sensitivity and starting point of the ABL and dynamic ABL can be set by using bus.	40 5kΩ 30kΩ 70kΩ 70kΩ 70kΩ 70kΩ 70kΩ	ABCL OFF: 6V or more

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL	
46	V _{CC3} (9V)	The V _{CC} pin of picture quality and color difference blocks. Connect 9V (Typ.).		_	
47	YM input	The half-tone switch for internal RGB signal. When the voltage at this pin is set to 7.0V or more, the RGB output voltage.	47 300Ω 15kΩ 15kΩ 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Soft AKB	
48	VSM output	Outputs the Y-signal that routed HPF after it had been subjected to DC restoration. The output is muted with the switches of pins 32 and 36.	8 2000 35k0 1k0	DC 3.5V	
49	APL detection	Connect the filter correcting DC restoration ratio. Opening this pin can monitor the Y-signal that was subjected to black stretching.	Prestoration ratio. The prestoration ratio is presented by the prestoration ratio is presented by the prestoration ratio. The prestoration ratio is presented by the prestoration ratio is presented by the prestoration ratio. The prestoration ratio is presented by the prestoration ratio is presented by the prestoration ratio. The prestoration ratio is presented by the prestoration ratio is presented by the prestoration ratio is presented by the		
50	Black peak hold	Connect the filter controlling the black stretching gain of the black stretching circuit. The black stretching gain varies depending on the voltage at this pin.	ter controlling thing gain of thing circuit. Ching gain and on the		

PIN No.	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
51 52	V/I input U/Q input	The pin through which R-Y (V)/I and B-Y (U)/Q signals are input. Input via clamp capacitor.	51 7 7 7 7	When Burst: Chroma = 1 : 1 360mV _{p-p} DC : 5.0V
53	Y2 input	The pin through which B-Y (V)/I and R-Y (U)/Q signals are input. Input via clamp capacitor.	1kΩ 1kΩ 1kΩ 1kΩ	1V _{p-p} (同期含) 10g-p (同期含) 6.3V GND
54	Color limiter	Color the filter detecting the color limit.	46 10kΩ 10kQ 1	DC
55	R S/H	The same as pin 29 and 30.	The same as pin 29 and 30.	DC
56	SENSE input	This pin is to sense IK voltage feed-back from a CRT Drive circuit.	56 500Ω 500Ω	R G B 1.5V

TOSHIBA TA1276AN

BUS CONTROL MAP

WRITE MODE

SLAVE ADDRESS: 88H (10001000)

SUB	D7	D -	D-	D.	D-	D.	Γ.	Dn	PRE	SET
ADDRESS	D ₇ MSB	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀ LSB	MSB	LSB
00	P-MUTE							1000	0000	
01				BRIGH	TNESS				1000	0000
02				COLOR				Y-MUTE	1000	0000
03				TINT				YM-SW	1000	0000
04			S	HARPNES	S			YNR	1000	0000
05			RGB	BRIGHTN	IESS			WPS L	1000	0000
06	HI BRT			RG	B CONTRA	AST			1000	0000
07		S	UB COLO	R		COLO	OR γ	CLT	1000	0000
08		SU	B CONTRA	\ST		Υ-γ C	URVE	FLESH	1000	0000
09			(G (R) DRIVE	E			DR-SW	1000	0000
0A				B DRIVE				CDE	1000	0000
0B		HORIZ	ONTAL PO	SITION		HV-SepL	V-OFF	H-BLK	1000	0000
0C				R CUT	R CUT OFF					0000
0D				G CUT OFF					1000	0000
0E				B CU1	ΓOFF				1000	0000
0F	R-Y P	HASE	R/B	GAIN	G/B	GAIN G-Y PHASE			0000	0000
10	co	LOR SYST	EM	P/N-ID	BB SW	OSD-SL	OS-ACL	TX-ACL	0000	0000
11	VSM F	PHASE	VSM	GAIN	APA	CON PEA	K f ₀	VSM-PB	0000	0000
12	DC RES	TORATION	POINT	DC RES	TORATIO	N RATE	DC RES	T. LIMIT	0000	0000
13	BLACK	STRETCH	POINT	APL V	'S BSP	Y- γ PNT	VSM-H.F	PB FREQ	0000	0000
14	SHR-TR	ACKING	TEST	RGB- γ	B.L.C.	B.S.G.	B.D.L.	BS-ARE	0000	0000
15	DYNAMIC ABL POINT			DYNA	MIC ABL	GAIN	IN AKB MODE		0000	0000
16	ABL POINT				ABL GAIN	RGB OUT MODE			0000	0000
17	HD-OUT	V-BLK	VERTIC	CAL FREQU	JENCY	VERT	ICAL POSI	TION	0000	0000
18	Y-DL	C-TRAP		TOF f ₀			TOF-Q		0000	0000

READ MODE

SLAVE ADDRESS: 89H (10001001)

		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀
Γ	0	PORET	COLOR	COLOR SYSTEM		X'tal		V-STD	H-LOCK
ſ	1	N-DET	RGBOUT	Y ₁ -IN	IQ-IN	Y2-IN	H-OUT	VP-OUT	IK-IN

BUS CONTROL FEATURE

WRITE MODE

ITEM	EXPLAIN	PRESET
P-MUTE	Picture mute SW; (0): OFF, (1): ON	ON
UNI-COLOR	Uni-color adjustment; - 18dB~0dB	Center
BRIGHTNESS	Brightness adjustment (including sub adjustment); -40IRE~+40IRE	Center
COLOR	Color adjustment ; −20dB (Color mute)~ +4dB	0dB
Y-MUTE	Y mute SW; (0): ON, (1): OFF	ON
TINT	Hue adjustment ; −32°~+32°	0°
TM-SW	Half-tone SW (YUV input); (0): OFF, (1): ON	OFF
SHARPNESS	Sharpness adjustment; -20dB~+14dB	+ 8dB
YNR	Y Noise Reduction SW; (0): OFF, (1): ON	OFF
RGB BRIGHTNESS	RGB Brightness Adjustment; - 20IRE~ + 20IRE	OIRE
WPS L	White Peak Suppression Level; (0): 130IRE, (1): 110IRE	130IRE
HI BRT	High-bright color; (0): OFF, (1): ON	OFF
RGB CONTRAST	RGB Contrast; - 18dB~0dB	– 18dB
SUB COLOR	Sub-color; -4dB~0dB~+3dB	0dB
COLOR γ	Color γ correction point; (00) : OFF, (01) : 0.2V _{p-p} , (10) : 0.4V _{p-p} , (11) : 0.6V _{p-p}	OFF
CLT	Color Limiter Level; (0): 1.8V _{p-p} , (11): 2.2V _{p-p}	1.8V _{p-p}
SUB CONTRAST	Sub-contrast adjustment ; -3dB~+3dB	0dB
Y-γ CURVE	Y- γ curve switching ; (00) : OFF, (01) : -2.5dB, (10) : -5.6dB, (11) : -7dB	OFF
FLESH	Flesh color; (0): OFF, (1): ON	OFF
G(R)/B DRIVE	R (G) / B drive gain adjustment; - 5dB~0dB~ + 3dB	0dB (40h)
DG-SW	Drive gain base axis switching; (0): G, (1): R	G
CDE	Color Detail Enhancer; (0): ON (Foced OFF when sharpness go through), (1): OFF	ON
HORIZONTAL POSITION	Horizontal position adjustment ; -3μ s $\sim +3\mu$ s	0μs
HV-SepL	Sync separation level; (from SYNC TIP) (0): 35%, (1): 40%	35%
V-OFF	Vertical output SW; (0): ON, (1): OFF	ON
H-BLK	Horizontal blanking SW; (0): ON, (1): OFF	ON
R/G/B CUTOFF	R/G/B cut-off adjustment; When AKB-OFF: RGB output 2V~2.5V~3V When AKB-ON: SENS input 1V _{p-p} ~1.5V _{p-p} ~2V _{p-p} (±5IRE)	Center (80h)
R-Y PHASE	R-Y relative phase switching; (00): 90°, (01): 92°, (10): 94°, (11): 112°	0.56
R/B GAIN	R/B relative amplitude switching; (00): 0.56, (01): 0.68, (10): 0.79, (11): 0.86	90°
G/B GAIN	G/B relative amplitude switching; (00): 0.3, (01): 0.34, (10): 0.4, (11): 0.45	0.3
G-Y PHASE	G-Y relative phase switching ; (00) : 236°, (01) : 240°, (10) : 244°, (11) : 253°	236°

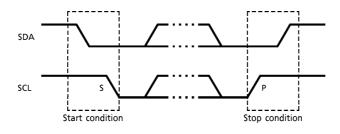
ITEM	EXPLAIN	PRESET					
	Color system ; System X'tal Color Color TINI difference difference control mute input						
COLOR SYSTEM	(000): NTSC 3.58 Forced OFF I/Q Enable (001): NTSC 3.58 Forced OFF U/V Enable (010): NTSC 4.43 Forced OFF U/V Enable (011): PAL 4.43 (N) Forced OFF U/V Enable (100): PAL M Forced OFF U/V Enable (101): SECAM 4.43 Forced OFF U/V Enable (110): MULTI 3.58/4.43 Forced OFF U/V Enable (111): Trinorma 3.58/M/N Forced OFF U/V Enable	NTSC (000)					
P/N ID	PAL/NTSC ident sensitivity switching; (0): LOW (When digital comb filter used), (1): Normal	LOW					
BB SW	Blue Back SW; (0): OFF, (1): ON	OFF					
OSD-SL	OSD peak suppressing level switching; (0): 96IRE, (1): 76IRE	96IRE					
OS-ACL	OSD ACL SW; (0): ON, (1): OFF	ON					
TX-ACL	RGB ACL SW; (0): Gain 1/2, (1): Normal	Gain1/2					
VSM PHASE	VSM output phase switching; (00): -40ns, (01): -20ns, (10): 0ns, (11) +20ns	– 40ns					
VSM GAIN	VSM output gain switching ; (00) : 0dB, (01) : -6dB, (10) : -9dB, (11) : OFF	0dB					
APACON PEAK f ₀	Apacon peak frequency switching; (000): Through (Apacon off), (001): 4.0MHz, (010): 3.3MHz, (011): 2.5MHz, (100): Through (Apacon off), (101): 13MHz, (110): 10MHz, (111): 8MHz						
VSM PB	VSM output horizontal parabolic modulation SW; (0): Parabolic modulation OFF, (1): ON (Nearby sharpness – 3dB)	Parabolic modulation OFF					
DC RESTORATION POINT	DC restoration start point; (000): 0% ~ (111): 42%	0%					
DC RESTORATION RATE	DC restoration rate ; (000) : 100%~(111) : 130%	100%					
DC REST. LIMIT	DC restoration limit point; (APL) (00): 100%, (01): 87%, (10): 73%, (11): 60%						
BLACK STRETCH POINT (BSP)	Black stretcher start point; When APL 0% (000): 22IRE~(111): 56IRE						
APL VS BSP (AVS)	APL level vs. black stretcher start point; (00): 0dB~(11): 1.5dB, BSP + APL × BSP × AVS						
Y-γ PNT	Y- γ point switching ; (0) : 100IRE, (1) : 95IRE						
VSM-H. PB FREQ	VSM output horizontal parabolic frequency; (00): 15.7kHz, (01): 24.8kHz, (10): 31.5kHz, (11): 33.75kHz						
SHR-TRACKING	Sharpness tracking; (00): HIGH, (11): LOW	HIGH					

ITEM	EXPLAIN	PRESET
TEST	Test mode; (0): NORMAL (1): Test mode (For factory test) Switched by sub-address 17H <during gate-pulse=""> D₂ (0): during V-BLK, (1): NORMAL Y/RGB smoothing OFF, Monitor of DAC at HD output</during>	NORMAL
RGB- γ	RGB- γ SW ; (0) : OFF, (1) : ON	OFF
B.L.C.	Block level automatic correction (Priority over black stretcher); MAX 7.5IRE (0): OFF, (1): ON	OFF
B.S.G.	Black stretcher gain SW; (0) ON, (1): OFF	ON
B.D.L.	Black detection SW; (0): 3IRE, (1): 0IRE	3IRE
BS-ARE	Black area reinforcement SW; For wide TV (When using time axis compression IC) (0): ON, (1): OFF	ON
DYNAMIC ABL POINT	Dynamic ABL detection voltage; (000): MIN~(111): MAX	MIN
DYNAMIC ABL GAIN	Dynamic ABL sensitivity; (000): MIN~(111): MAX	MIN
AKB MODE	AKB MODE; Only black level (00): AKB OFF+S/H LOW, (01): AKB OFF+Cutoff BUS (10): AKB ON+I-DET NORMAL, (11): AKB ON+I-DET × 3	(00) AKB OFF+ S/H LOW
ABL POINT	ABL detect voltage; (000): MIN~(111): MAX	MIN
ABL GAIN	ABL GAIN; (000): MIN~(111): MAX	MIN
RGB OUT MODE	RGB output mode SW; (00): NORMAL, (01): Only R, (10): Only G, (11): Only B	NORMAL
HD-OUT	HD output SW; (0): HD output, (1): AKB period pulse	HD output
V-BLK	Vertical Blanking SW; (0): ON, (1): OFF	ON
VERTICAL FREQUENCY	Vertical Frequency; (000): AUTO (50, 60Hz), (001): AUTO (50, 60Hz/V MASK OFF), (010): 60Hz, (011): 60Hz (V MASK OFF), (100): Forced 262.5H, (101): Forced 312.5H, (111): Forced 313H, When (100), (101), (110), (111): AFC Free-run	(000) AUTO
VERTICAL POSITION	Vertical position; (000): 0H~(111): 7H (1H STEP)	0H
Y-DL	Y-DL SW; (0) OFF, (1): ON (+80ns)	OFF
C-TRAP	Chroma Trap SW; (0): OFF, (1): ON	OFF
TOF-f ₀	Selectable TOF Peak Frequency; (000): 0.8f _{SC} + TOF OFF~(111): 1.5f _{SC}	TOF OFF
TOR-Q	Selectable TOF Q; (000): 0.6~(111): 1.2	0.6

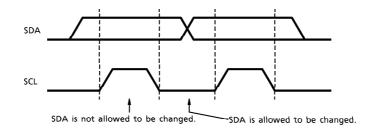
DELAY TIME FROM Y_1 INPUT (PIN 15) TO Y_1 OUTPUT (PIN 4)

COLOR	TRAP	Y-DL	DELAY TIME
B/W		OFF	295ns
B / VV	_	ON	375ns
		OFF	295ns (4.43)
		OFF	295ns (3.58/M/N)
	OFF	ON	375ns (4.43)
PAL/NTSC		ON	375ns (3.58/M/N)
PAL/NISC		OFF	295ns (4.43)
		OFF	310ns (3.58/M/N)
	ON	ON	375ns (4.43)
		ON	390ns (3.58/M/N)
CECANA.		OFF	495ns
SECAM	_	ON	575ns

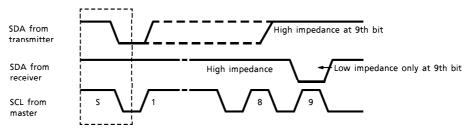
READ MODE

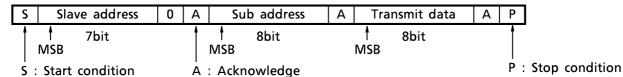

CHARACTERISTIC	EXPLAIN
PORSET	Power On Reset; (0): RESISTER PRESET, (1): NORMAL
COLOR SYSTEM	Color system; Receiving system (Judgement of ID ON/OFF) (00): B/W, (01): SECAM, (10): PAL, (11): NTSC
X'tal	X'tal Mode; (00): —, (01): 4.43 (N), (10): M, (11): 3.58
V-FREQ	Vertical frequency ; (0) : 50Hz, (1) : 60Hz
V-STD	Vertical Standard ident ; (0) NON-STANDARD, (1) : STANDARD
H-LOCK	Horizontal Lock ident ; (0) : LOCK, (1) : NON-LOCK
N-DET	Noise ident result; (0): FEW, (1): MANY
RGBOUT, Y ₁ -IN, IQ-IN, Y ₂ -IN, H-OUT, VP-OUT	Self-ident result ; (0) : NG, (1) : OK
IK IN	IK input ident result; (0): NG, (1): OK

I²C BUS TRANSMISSION / RECEIVING


SLAVE ADDRESS: 88H

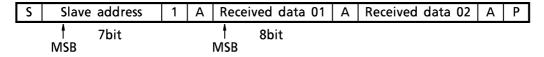
	⁴ 6	A ₅	Α4	Α3	A ₂	Α1	A ₀	W/R
Г	1	0	0	0	1	0	0	0/1


Start/stop condition


Bit transmission

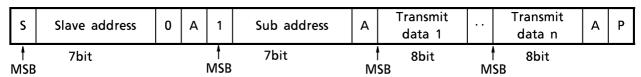
Confirmation response

DATA TRANSMIT FORMAT 1



DATA TRANSMIT FORMAT 2

/					
∬ A	Sub address	Α	Transmit data n	Α	Р


DATA RECEIVE FORMAT

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.

The STOP condition is generated by the master.

OPTIONAL DATA TRANSMIT FORMAT: AUTOMATIC INCREMENT MODE

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address.

Purchase of TOSHIBA I²C components conveys a license under the Phillips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C standard Specification as defined by Phillips.

- O Pin 23 H-out (Mode SW)
 - You can select the Double Scan Mode (External CP (Clamping Pulse) input Mode), by connecting Pin 23 to DEF V_{CC} . (The threshold of Pin 23 : 8.7V = DEF V_{CC} 0.3V) When Double Scan Mode, function of Pin 24 and 25 are changed.
- Normal Scan (Internal CP) Mode: Pin 23 H-out
 The function of Pin 24 is curve correction input, that of Pin 25 is FBP (Flay Back Pulse) input.
 The input signals of Y2, U/I and V/I inputs (Pin 53, 52 and 51), Analog OSD inputs (Pin 39, 38 and 37), Analog RGB inputs (Pin 35, 34 and 33) are clamped of the internal CP based on the Y1/Sync input (Pin 15).
- Double Scan (External CP input) Mode: Pin 23 H-out
 The function of Pin 24 is EXT/BPP (Note) input, that of Pin 25 is H/V BLK (blanking) input.
 The input signals of Y2, U/I and V/I inputs (Pin 53, 52 and 51), Analog OSD inputs (Pin 39, 38 and 37), Analog RGB inputs (Pin 35, 34 and 33) are clamped of the external CP based on Pin 24.
 In case of Double Scan Mode, bus "V-BLK" should be set (1); OFF.

TERMINAL FUNCTIONS

MODE	NORMAL SCAN MODE	DOUBLE SCAN MODE				
PIN No.	(INTERNAL CP)	(EXTERNAL CP INPUT)				
Pin 23	H-out	DEF V _{CC} (9V)				
Pin 24	Curve correction signal input	EXT CP/BPP input				
Pin 25 FBP input (for AFC-2 detection, H BK		H/V BLK input (for RGB H/V BLK, AKB)				
Pin 53, 52, 51	Clamping by internal CD	Clamping by outernal CD				
Pin 39, 38, 37	Clamping by internal CP	Clamping by external CP (based on Pin 24)				
Pin 35, 34, 33	(based on Pin 15)	(based on Fill 24)				
Pin 15	Normal scan ; Y/Sync signal input					
Pin 17	Normal scan; HD pulse output (based on Pin 15)					
Pin 31	Normal scan ; VP output (based on Pin 15)					

(Note) BPP: Black Peak detection stopping Pulse

MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CCmax}	12	V
Input Terminal Voltage	e _{inmax}	9	V _{p-p}
Power Dissipation	P _D (Note 1)	1920	mW
Power Dissipation Reduction Rate	1 / Qja	15.4	mW / °C
Operating Temperature	T _{opr}	- 20∼65	°C
Storage Temperature	T _{stg}	- 55∼150	°C

(Note 1) Refer to the figure below.

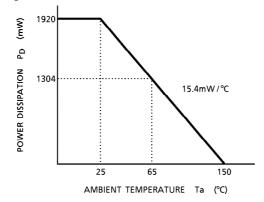


Fig. Power dissipation reduction against higher temperature

RECOMMENDED CONDITION IN USE

CHARACTERISTIC	DESCRIPTION	MIN.	TYP.	MAX.	UNIT		
Cample Welters	Pin 5		5.0	5.3	.,		
Supply Voltage	Pin 22, Pin 40, Pin 46	8.7	9.0	9.3	V		
	White: 100%, including,						
Y ₁ /Sync, Y ₂ Input Signal Level	synchronization	0.9	1.0	1.1	V _{p-p}		
<u>-</u>	(Synchronization: minus)						
Chromo Innut Signal Lovel	When TOF OFF (Burst level)	200	300	400	m)/		
Chroma Input Signal Level	When TOF ON (Burst level)	100	200	300	mV _{p-p}		
I/Q, U/V Input Level	B : C = 1 : 1	_	300	_	mV _{p-p}		
OSD / Angles BCB Import Lovel	When OSD input (DC coupling)	4.2	_	5.0	V		
OSD / Analog RGB Input Level	When analog RGB input (AC coupling)	0.4	0.5	0.6	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
Analog RGB Input Level	_	0.4	0.5	0.6	V _{p-p}		
FBP Width	_	11	12	13	μs		
FBP Input Current	_	_	_	1.5			
RGB Output Current	_	_	1.0	2.0]		
H. Output Current	_	_	3.0	10.0	mA		
Pin 18 Input Current	_	_	0.5	1.0			

ELECTRICAL CHARACTERISTICS

($V_{CC1} = 5V$, $V_{CC2} / V_{CC3} / DEF$ $V_{CC} = 9V$, $T_0 = 25^{\circ}C$, unless otherwise specified) SUPPLY CURRENT

PIN NAME	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT
V _{CC1}	^I CC1	_	34.0	40.5	50.0	
V _{CC2}	I _{CC2}	_	33.0	40.0	49.0	
V _{CC3}	lCC3	_	32.0	39.5	48.0	mA
DEF V _{CC}	I _{CC4}	_	9.5	12.8	18.0	

TERMINAL VOLTAGE

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN.	TYP.	MAX.	UNIT
3	SECAM CONT.	V ₃	_	3.7	4.0	4.3	
4	Y ₁ OUTPUT	V ₄	_	1.7	2.0	2.3	
5	U/Q OUTPUT	V ₅	_	2.2	2.5	2.8	
6	V/I OUTPUT	٧6	_	2.2	2.5	2.8	
8	4.43MHz X'tal	V ₈	_	3.7	4.0	4.3	
9	M PAL X'tal	Vg	_	3.7	4.0	4.3	
10	3.58MHz X'tal	V ₁₀	_	3.7	4.0	4.3	
13	CHROMA INPUT	V ₁₃	_	2.2	2.5	2.8	
15	Y ₁ INPUT	V ₁₅	_	2.7	3.0	3.3	
16	V SEP.	V ₁₆	_	5.7	6.1	6.5	
17	SYNC. IN	V ₁₇	_	2.60	2.85	3.10	
21	32f _H VCO	V ₂₁	—	5.4	5.7	6.0	
24	CURVE CORRECTION	V ₂₄		4.3	4.5	4.7	
32	Ys2	V ₃₂	_	0	0.1	0.3	
33	ANALOG B INPUT	V ₃₃	_	3.5	3.8	4.1	V
34	ANALOG G INPUT	V ₃₄		3.5	3.8	4.1	
35	ANALOG R INPUT	V ₃₅	_	3.5	3.8	4.1	
36	Ys1	V ₃₆		0	0.1	0.3	
37	OSD/ANALOG B INPUT	V ₃₇	—	3.3	3.6	3.9	
38	OSD/ANALOG G INPUT	V ₃₈		3.3	3.6	3.9	
39	OSD/ANALOG R INPUT	V ₃₉	_	3.3	3.6	3.9	
45	ABCL INPUT	V ₄₅		5.85	6.10	6.35	
48	VM OUTPUT	V ₄₈		3.2	3.5	3.8	
49	APL DET	V ₄₉	_	4.8	5.0	5.2	
50	BLACK PEAK HOLD	V ₅₀	_	4.2	4.4	4.6	
51	V/I INPUT	V ₅₁		4.8	5.0	5.2	
52	U/Q INPUT	V ₅₂	_	4.8	5.0	5.2	
53	Y ₂ INPUT	V ₅₃	_	6.1	6.3	6.5	
54	COLOR LIMITER	V ₅₄		6.6	6.9	7.2	

AC CHARACTERISTIC

VIDEO SECTION

SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
DR ₅₃	_	_	0.7	1.0	1.5	V _{p-p}
V _B	_	(Nata)(-)	- 5	0	5	
V _{B3}	_	(Note V ₁)	35	42	49	mV
G _{BS}	_	(Note V ₂)	1.30	1.40	1.50	times
PBST1	_	(Noto)(a)	17	22	27	
P _{BST2}	_	(Note v3)	51	56	61	IRE
P _{BS1}	_	(Nete)/-)	_	0	4	IKE
P _{BS2}	_	(Note V ₄)	14	20	26	
△V ₀₀₁	_		30	50	70	
△V ₀₁₀	_	(Note V ₅)	90	110	130	mV
∆V ₁₀₀	_		220	240	260	
SDAMIN	_	(Nata)/-)	_	0	0.04	\/ /\/
	_	(Note V ₆)	0.280	0.295	0.310	V/V
	_	(Note V ₇)	6.5	7.0	7.5	
	_		95	100	105	IRE
	_	_	2	5	8	
	_		- 3.5	- 2.5	- 1.5	dB
	_	<u> </u>	- 5.8	- 4.8	- 3.8	
	_		- 7.5	- 6.5	- 5.5	
∆V _{BP}	_	(Note Vg)	- 15	0	15	mV
ADT100	_	(1)	0.9	1.0	1.1	
ADT130	_	(Note Vg)	1.25	1.35	1.45	times
V _{DT0}	_	/N	- 3	0	3	
	_	(Note V ₁₀)	42	47	51	
	_		59	63	67	0.4
	_	(N) (1. N/ N	71	75	79	%
	_	(Note V ₁₁)	83	87	91	
	_		95	99	103	
	_		3.3	4.2	5.1	
	_		2.6	3.3	4.0	MHz
	_		2.0	2.5	3.0	
	_	_	11.2	14.5	17.4	
	_		9.5	11.9	14.3	
FAPH11	 		6.5	8.1	9.7	
	DR53 VB VB3 GBS PBST1 PBST2 PBS1 PBS2 ΔV001 ΔV010 ΔV100 SDAMIN SDAMAX BLC Pγ0 Pγ100 Gγ01 Gγ10 Gγ11 ΔVBP ADT100 ADT130 VDT0 VDT48 PDTL60 PDTL73 PDTL87 PDTL100 FAPL01 FAPL10 FAPL10 FAPH10	SYMBOL CIR-CUIT DR53 — VB — VB3 — GBS — PBST1 — PBST2 — PBS1 — PBS2 — ΔV001 — ΔV100 — SDAMIN — SDAMIN — SDAMAX — P70 — P7100 — Gγ11 — Gγ11 — AVBP — ADT100 — ADT130 — VDT48 — PDTL60 — PDTL73 — PDTL87 — PDTL100 — FAPL11 — FAPH10 — FAPH10 —	SYMBOL CUIT CUIT CUIT TEST CONDITION DR53 — — VB — (Note V1) VB3 — (Note V2) PBST — (Note V2) PBST1 — (Note V3) PBST2 — (Note V4) PBS2 — (Note V4) ΔV010 — (Note V5) ΔV100 — (Note V6) SDAMIN — (Note V6) PC — — POT — — Gγ01 — — Gγ01 — — Gγ11 — — ΔVBP — (Note V8) ADT130 — (Note V9) VDT0 — (Note V10) VDT48 — — PDTL73 — — PDTL87 — — PDTL100 — — FAPL10 — —	SYMBOL CUIT CUIT CUIT TEST CONDITION (NIN.) MIN. DR53 — — 0.7 VB — (Note V1) — 5 VB3 — (Note V2) 1.30 PBST — (Note V2) 1.30 PBST1 — (Note V3) — PBST2 — (Note V4) — PBS1 — (Note V4) — PBS2 — (Note V4) — ΔV001 — (Note V5) 90 ΔV010 — (Note V5) 90 ΔV010 — (Note V6) — SDAMIN — (Note V6) — SDAMAX — (Note V7) 6.5 P70 — — 95 P7100 — — — Gγ11 — — — ADT130 — (Note V9) 1.25 ADT130 — — —	SYMBOL CUIT CIR-CUIT TEST CONDITION MIN. TYP. DR53 — — 0.7 1.0 VB — (Note V1) — 5 0 VB3 — (Note V2) 1.30 1.40 PBST1 — (Note V2) 1.30 1.40 PBST2 — (Note V3) — 0 PBS1 — (Note V4) — 0 PBS2 — (Note V4) — 0 ΔV001 — (Note V5) 90 110 ΔV100 — (Note V5) 90 110 20 220 240 — 0 SDAMIN — (Note V6) — 0 0.280 0.295 BLC — (Note V6) — — 0 0.280 0.295 BLC — (Note V7) 6.5 7.0 — — — 5 7.0 P7100 </td <td>SYMBOL CUIT CIR-CUIT TEST CONDITION MIN. TYP. MAX. VB — — 0.7 1.0 1.5 VB — (Note V₁) 35 42 49 GBS — (Note V₂) 1.30 1.40 1.50 PBST1 — (Note V₃) 17 22 27 PBST2 — (Note V₃) 51 56 61 PBS1 — (Note V₃) 14 20 26 ΔV001 — (Note V₃) 90 110 130 ΔV100 — (Note V₃) - 0 0.04 SDAMIN — (Note V₃) - 7.5 - 5 8 8 - 7.5</td>	SYMBOL CUIT CIR-CUIT TEST CONDITION MIN. TYP. MAX. VB — — 0.7 1.0 1.5 VB — (Note V₁) 35 42 49 GBS — (Note V₂) 1.30 1.40 1.50 PBST1 — (Note V₃) 17 22 27 PBST2 — (Note V₃) 51 56 61 PBS1 — (Note V₃) 14 20 26 ΔV001 — (Note V₃) 90 110 130 ΔV100 — (Note V₃) - 0 0.04 SDAMIN — (Note V₃) - 7.5 - 5 8 8 - 7.5

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	G _{MAXL}	_		11	14	17	
Sharpness Control Range	G _{MINL}	_	(Noto \/.a)	- 11	-8	- 5	
Sharphess Control Range	GMAXH	_	(Note V ₁₂)	11	14	17	
	GMINH	_		- 9	- 6	- 3	dB
Shamman Cantual Cantan Cain	G _{CENL}	_		7	10	3	ав
Sharpness Control Center Gain	GCENH	_	_	7	10	3	
YNR Characteristic	GYL	_	(Note Van)	- 11	-8	- 5	
TINK CHaracteristic	GYH	_	(Note V ₁₃)	- 9	- 6	-4	
	T _{SL1}	_		100	120	140	
CDT Description to 2T D less less to	TSRTL	_	(Nata)/)	40	60	80	
SRT Response to 2T Pulse Input	T _{SH1}	_	(Note V ₁₄)	160	180	200	ns
	TSRTH	_		20	30	45	
	F _{VL}	_	When normal mode	7	9	11	
VSM Peak Frequency	FVH	_	When double scan mode	12.5	16	19.5	MHz
	G _{VL00}	_		11	13	15	
	G _{VL01}	_		- 7.5	- 6	- 4.5	
iona o :	G _{VL10}	_	- - - (Note V ₁₅)	- 11	- 9	- 8	
	G _{VL11}	_		_ ∞	- 35	- 29	
VSM Gain	G _{VH00}	_		11	13	15	
	G _{VH01}	_		- 7.5	- 6	- 5	_
	G _{VH10}	_		- 11	- 9	- 7	dB
	G _{VH11}	_		_ ∞	- 32	- 26	
	G _{VRL}	_		- 4	-3	- 2	
	GVLL	 		- 4	-3	- 2	
VSM Parabolic Modulating Gain	GVRH	_	(Note V ₁₆)	- 4	-3	- 2	
	GVLH	_		<u> </u>	-3	- 2	
Threshold Voltage of VSM Muting	V _{SR36}	<u> </u>	Pin 32, Pin 36	0.65	0.75	0.85	V
	TVML1	 	,	0	50	100	-
	TVML2	_		0	50	100	
	TVML3			0	50	100	
Response Time for VSM High Speed	TVML4	†		0	50	100	
Muting	TVMH1	<u> </u>	(Note V ₁₇)	0	50	100	
	TVMH2	_		0	50	100	
	TVMH3			0	50	100	ns
	TVMH4	_		0	50	100	
	TY2RD	_	When through	26	36	46	
Between Y2 Input and R Output	T _{Y2RL}	_	When normal mode	200	220	240	
Delay Time	T _{Y2RH}	_	When double scan mode	85	100	115	

CHROMA SECTION

IQ Demodulation Angle	Q Axis	θ_{BN}	_	_	29.0 118.0	33.0	37.0 126.0	0
IQ Signal Demodulation Rat	l .	v _{RN} / v _{BN}		R-Y/B-Y	0.94	1.00	1.15	_
Output Level	I Axis	VRN	_	signal	290	355	415	mV _{p-p}
IQ Color Difference Signal	Q Axis	V _{1b}	_	3.58NTSC When B:C=1:1	1.15 290	1.55 355	1.75 415	
f _{sc} Output DC Level		V _{1a}	_	When 3.58NTSC Except for	2.80	3.20	3.50	l V
		f _{Mc}	_	When M-PAL	0.54	0.78	0.96	
f _{sc} Output Amplitude		f _{4c}	_	When 4.43PAL	0.52	0.72	0.90	V _{p-p}
		f _{3c}	_	When 3.58NTSC	0.54	0.78	0.96	
rrequericy		f _{0M}	_	f ₀ = 3.575611MHz	- 200	0	200	
Frequency	1	f ₀₄	_	f ₀ = 4.433619MHz	- 200	0	200	Hz
3.58MHz/4.43MHz Free Rui	2	f ₀₃	_	f ₀ = 3.579545MHz	- 200	0	200	
		fM _{HL}			- 2000	- 500	- 250	
		fM _{PL}	_		- 2000	- 500	- 250	
		fM _{PH} fM _{HH}	_]	250	500	2000]
			_		250	500	2000]
		f4 _{HL}	_	(Note C ₃)	- 2000	- 500	- 250	Hz
APC Pull-In / Hold Range		f4 _{PL}	_		- 2000	- 500	- 250	
ADC D 111. /1/ 11 D		f4HH	_	(NI=4= C)	250	500	2000	
		f4 _{PH}	_	1	250	500	2000	
		f3 _{HL}	_	1	- 2000		- 250	
		f3 _{PL}	_	1	– 2000		- 250	
		f3 _{HH}		1	250	500	2000	
		/⊃IMI f3 _{PH}			250	500	2000	
APC Frequency Control Sens	orcivity	eta4 eta M		(Note C2)	0.70	1.20	1.70	12 / III\
ADC Fraguancy Control Cons	itivity.	β3	_	(Note C ₂)	0.70 0.70	1.20	1.70	 Hz / m\
		es –			- 6.0	- 4.3	- 2.0	
Sub Color Control Character	ristic	es +	_	_	2.0	3.0	4.0	dB
		Α	_		0.90	0.97	1.05	times
		F ₁₀	_		0.090		0.135	
ACC Characteristic		F ₃₀	_	(Note C ₁)		0.343	0.400	v p-p
		F300				0.355	0.410	V _{p-p}
		F ₆₀₀	_			0.355	0.410	
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT

CHARACTERIST	IC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
		∨BNe	_		_	1.90	4.00	
Residual Carrier Level		∨RNe	_	f lovel	_	1.90	4.00	
Residual Carrier Level		vвРе	_	f _{sc} level	_	1.90	4.00	
		∨RPe	_		_	2.24 2.60 2.15 2.50 2.25 2.60 2.25 2.60 3.8.30 8.60 4.30 4.60 1.0.50 0.20 5.4.20 4.45 5.2.50 2.75 6.4.20 4.30 6.4.00 4.30 6.7.0 1.00 6.5.83 7.87 6.2 3.88 5.24 6.3 5.74 7.75 6.4 3.75 5.06 6.6.83 8.87		
		∨BHNe	_		_	1.90	4.00	mV _{p-p}
Residual Higher Harmonia	ss Lovel	[∨] RHNe	_	f _{sc} ×2 level	_	1.90	4.00	
Residual Higher Hamilonii	LS Level	VBHPe	_	ISC X 2 TEVEL	_	1.90	4.00	
		∨RHPe	_		_	1.90	4.00	
	3.58NTSC	V_{BN}	_	B-Y output	1.80	2.15	2.50	
Color Difference Output	3.301130	V _{RN}	_	R-Y output	1.90	2.24	2.60	
DC Voltage	4.43NTSC	V_{BP}	_	B-Y output	1.80	2.15	2.50	
	4.43N13C	V_{RP}	_	R-Y output	1.90	2.25	2.60	
	PAL	V_{DLP}	—		8.00	8.30	8.60]
1HDL Output DC Level	NTSC	V _{DLS}	_	Output from pin	4.00	4.30	4.60	
	SECAM	V_{DLN}	_		0.01	0.50	0.20] v
Sand Castle Bulsa	СР	SCH	_		7.50	7.80	8.10]
Sand Castle Pulse	HD	SCM	_	 	3.95	4.20	4.45	
Height	VD	SCL	_	_ 2.25 2.5	2.50	2.75	1	
		SEN	_		3.70	4.00	4.30	1
SECAM Output DC Level		SEP	_	(Note C ₄)	3.70	4.00	4.30	1
		SES	_		0.40	0.70	1.00	1
		vNCL	_		3.80	5.83	7.87	
NITCC Ident Consitiuitu		vNCH	_	(Note C ₅)	2.52	3.88	5.24	1
NTSC Ident Sensitivity		vN _{BL}	_	(Note C ₅)	3.73	5.74	7.75]
		vN _{BH}	_		2.44	3.75	5.06	
		vPCL	_		4.80	6.83	8.87	mV _{p-p}
DAL Idaus Canalsinis		vPCH	_	(Nata C)	3.52	4.88	6.24	1
PAL Ident Sensitivity		vPBL	_	(Note C ₆)	4.73	6.74	8.75	1
		vPBH	_		3.44	4.75	6.06	1
		GF _{H3}	_		20.7	22.7	24.7	
		GF _{C3}	_		20.2	22.2	24.2	1
TOT Chanastaniatia		GF _{L3}	_	(Nata C)	18.2	20.2	22.2	1
TOF Characteristic		GF _{H4}	_	(Note C ₇)	19.1	21.1	23.1	1
		GF _{C4}	_		19.4	21.4	23.4	1
		GF _{L4}	_		18.8	20.8	22.8	1
	Through	GYs	_	200 /	- 1.21	0.00	1.06	dB
Y ₁ In∼Y ₁ Out AC Gain	Normal	GYd	_	20log (output	- 1.21	0.00	1.06	1
	Double Scan	GYt	 —	level/input level)	- 1.21	0.00	1.06	1
Y ₁ In~Y ₁ Out Frequency	Bandwidth	Gf _{Y1}	—	_	- 4.0	- 1.0	0.0	1
Tour Filter C	3.58	GT _{C3}	_		_	- 25	- 20	1
Trap Filter Gain	4.43	GT _{C4}	<u> </u>	_	_	- 25	- 20	1
V 1 1 B 1 B	3.58NTSC	VD3	l —		1.30	1.60	_	
Y ₁ Input Dynamic Range	4.43PAL	VD4	<u> </u>	-	1.30	1.60	_	V _{p-p}

TEXT SECTION

TEXT SECTION		1	T					
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
		GR	_		2.95	3.30	3.70	
AC Gain		GG	_	(Note T ₁)	2.95	3.30	3.70	times
		G _B	_		2.95	3.30	3.70	
AC C.1. A 1.1 D.W.		G _G /R	_		0.94	1.00	1.06	
AC Gain Axial Difference		G _B /R	_	-	0.94	1.00	1.06	_
	R	GfR	_		25	30	_	
Output Bandwidth	G	G _{fG}	_	at - 3dB point	25	30	_	MHz
	В	G _{fB}	_		25	30	_	
		vuMAX	_		0.59	0.66	0.74	
		vuCNT	_	,	0.34	0.39	0.44	V _{p-p}
Uni-Color Control Character	istic	vuMIN		(Note T ₂)	0.09	0.11	0.13	
			_		14	15	16	dB
		⊿v _u VbrMAX	_		4.1	4.4	4.7	
Brightness Control Characte	ristic	VbrCNT	_	(Note T ₃)	3.25	3.55	3.85	V
3		VbrMIN	_	, ,	2.4	2.7	3.0	
Brightness Control Sensitivit	V	Gbr		(Note T ₄)	5.7	6.6	7.5	mV
	,	Vwps1			2.75	2.95	3.15	
White Peak Slice Level		Vwps2	<u> </u>	(Note T ₅)	2.30	2.50	2.70	V _{p-p}
Black Peak Slice Level		V _{BPS}	<u> </u>	(Note T ₆)	2.10	2.26	2.42	V
R		N ₄₁	_	(**************************************	_	- 58	- 49	
Signal-to -Noise Ratio of	G	N ₄₂	—	_		- 58	- 49	dB
RGB Output	В	N ₄₃	<u> </u>			- 58	- 49	
		G _{HT1}	_		0.45	0.50	0.55	
Half-Tone Gain		G _{HT2}	_	(Note T ₇)	0.45	0.50	0.55	times
Half-Tone ON Voltage		V _{HT}	<u> </u>	Pin 47	0.65	0.85	1.05	
	R	VVR	<u> </u>		0.3	0.8	1.3	
V-BLK Pulse Output Level	G	VVG	_	_	0.3	0.8	1.3	
	В	VVB	<u> </u>		0.3	0.8	1.3	V
	R	VHR	<u> </u>		0.3	0.8	1.3	-
H-BLK Pulse Output Level	G	VHG	—	_	0.3	0.8	1.3	
	В	VHB	<u> </u>		0.3	0.8	1.3	
		tdON	—		_	0.1	0.3	
Blanking Pulse Delay Time		t _{dOFF}	_	(Note T ₈)		0.15	0.3	μ s
		ΔV _{SU} +	<u> </u>		2.0	2.5	3.0	
Sub-Contrast Control Range		ΔV _{SU} -	_	<u> </u>	- 3.8	- 3.3	- 2.8	dB
		V#41	<u> </u>		2.25	2.50	2.75	
RGB Output Voltage		V#41	<u> </u>	(Note Tg)	2.25	2.50	2.75	V
Catput Voltage		V#42 V#43	<u> </u>	(1.515 19)	2.25	2.50	2.75	•
RGB Output Voltage Triaxia Difference	I	ΔV _{out}	_	_	_	0	150	mV
		CUT+	<u> </u>		0.45	0.50	0.55	
Cut-Off Voltage Control Rai	nge	CUT -	† <u> </u>	(Note T ₁₀)	0.45	0.50	0.55	V
					5.73	5.50	0.55	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	DRG+	_		2.35	2.85	3.35	
	DRG –	_		- 5.75	- 5.00	- 4.25	
Drive Adjustment Central Banco	DRB +	_	(Noto T)	2.35	2.85	3.35	d۵
Drive Adjustment Control Range	DRB –	_	(Note T ₁₁)	- 5.75	- 5.00	- 4.25	dB
	DRR +	_		2.35	2.85	3.35	
	DRR –	_		- 5.75	- 5.00	- 4.25	
Output Valtage of Mutica	MURD	_	/N - 4 - T)	2.1	2.26	2.42	
Output Voltage of Muting	MUGD	_	(Note T ₁₂)	2.1	2.26	2.42	.,
	BBR	_		2.1	2.26	2.42	V
Output Voltage of Blue Back	BBG	<u> </u>	(Note T ₁₃)	2.1	2.26	2.42	
-	BBB	 	, ,	1.15	1.30	1.45	V _{p-p}
	ACL1	 	/N - (- T)	- 5	- 3	- 1	
ACL Characteristic	ACL2	—	(Note T ₁₄)	- 14.5	- 13	- 11.5	dB
	ABL _{P1}	<u> </u>		0.12	0.17	0.22	
	ABL _{P2}	 		0.04	0.09	0.14	
	ABL _{P3}	—		- 0.05	0.00	0.05	
	ABL _{P4}	 		- 0.15	- 0.10	- 0.05	
ABL Point	ABL _{P5}	 	(Note T ₁₅)	-0.24	- 0.19	- 0.14	
	ABL _{P6}	—		- 0.34	- 0.29	- 0.24	
	ABL _{P7}	1 —	1	- 0.43	- 0.38	- 0.33	
	ABL _{P8}	<u> </u>		- 0.50	- 0.45	- 0.40	
	ABLG1	—		- 0.04	0.00	0.00	V
	ABL _{G2}	—		- 0.09	- 0.04	0.00	
	ABL _{G3}	 		- 0.24	- 0.19	- 0.14	
	ABL _{G4}	<u> </u>	,	- 0.40	- 0.35	- 0.30	
ABL Gain	ABL _{G5}	—	(Note T ₁₆)	- 0.56	- 0.51	- 0.46	
	ABLG6	_		- 0.73	- 0.68	- 0.63	
	ABLG7	—		- 0.90	- 0.85	- 0.80	
	ABLG8	—		- 0.10	- 0.92	- 0.87	
	V43 _R	—		2.25	2.5	2.75	
	V42 _R	_		0.3	0.8	1.3	
	V41 _R	—		0.3	0.8	1.3	
	V43 _G	_		0.3	0.8	1.3	
RGB Output Mode	V42 _G	_	(Note T ₁₇)	2.25	2.5	2.75	V
•	V41 _G	<u> </u>	177	0.3	0.8	1.3	
	V43 _B	_		0.3	0.8	1.3	
	V42 _B	<u> </u>		0.3	0.8	1.3	
	V41 _B	† -		2.25	2.5	2.75	
	θ ACBR	<u> </u>			1	_	
	θ ACBG	<u> </u>			2		Н
	θ ACBB	†_		_	3		
ACB Pulse Phase / Amplitude	VACBR	+_	(Note T ₁₈)	0.1	0.125	0.15	
	VACBG	<u> </u>		0.1	0.125	0.15	_
		+-		0.1	0.125		- h-h
	V _{ACBB}			0.1	0.123	0.13	

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
		IKR	_		1.45	1.65	1.85	
IK Input Level		IKG	_	Pin 56 input level	1.45	1.65	1.85	V
		IKB	_		1.45	1.65	1.85	
		γ1R	_		40	50	60	IDE
		γ2R	_		60	70	80	IRE
		∆ _{1R}	_		0.75	1.50	2.25	
		∆ _{2R}	_		- 0.75	0.00	0.75	dB
		∆3R	_		- 4.05	- 3.30	- 2.55	
		γ1G	_		40	50	60	IRE
		γ2G	_		60	70	80	INE
RGB γ Correction Characteri	stic	∆1G	_	(Note T ₁₉)	0.75	1.50	2.25	
		∆ _{2G}	_		- 0.75	0.00	0.75	dB
		∆3G	_		- 4.05	- 3.30	- 2.55	
		γ1B	_		40	50	60	IRE
		γ 2 Β	_	Τ Γ	60	70	80	
		△1B	_		0.75	1.50	2.25	
		△2B	_		- 0.75	0.00	0.75	dB
		∆3B	_		- 4.05	- 3.30	- 2.55	
		G _{TXR}	_		4.0	4.5	5.0	
Analog RGB Gain		G _{TXG}	_	(Note T ₂₀)	4.0	4.5	5.0	times
		G _{TXB}	_		4.0	4.5	5.0	
Analas BCB Cain Triavial D	:440 mom oo	G _{TXG} /R	_		0.94	1.00	1.06	
Analog RGB Gain Triaxial D	irrerence	G _{TXB} /R	_	_	0.94	1.00	1.06	_
	R	Gf _{TXR}	_		25	30	_	
Analog RGB Bandwidth	G	Gf _{TXG}	_	at -3dB point	25	30	_	dB
	В	Gf _{TXB}	_		25	30	_	
Analan BCD Innut	R	DR35	_		0.6	1.0	1.5	
Analog RGB Input Dynamic Range	G	DR34	_	<u> </u>	0.6	1.0	1.5	
Dynamic Kange	В	DR33	_		0.6	1.0	1.5	\ ,,
		VTXWPSR	_		2.30	2.55	2.80	V _{p-p}
Analog RGB White Peak Slid	ce Level	VTXWPSG	_	(Note T ₂₁)	2.30	2.55	2.80	
		VTXWPSB	_		2.30	2.55	2.80	
		V _{BPSR}			2.10	2.26	2.42	
Analog RGB Black Peak Lim	iter Level	V _{BPSG}	_	(Note T ₂₂)	2.10	2.26	2.42	-
		V _{BPSB}	_		2.10	2.26	2.42	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	vuTXR _{MAX}	_		0.8	0.9	1.0	
	vuTXG _{MAX}	_		0.8	0.9	1.0	
	vuTXB _{MAX}			0.8	0.9	1.0	
	vuTXR _{CNT}	_		0.45	0.52	0.59	
	vuTXG _{CNT}	_		0.45	0.52	0.59	V _{p-p}
Dep contract of the section	vuTXB _{CNT}	_	(N. 1. T.)	0.45	0.52	0.59	
RGB Contrast Control Characteristic	vuTXR _{MIN}	_	(Note T ₂₃)	0.10	0.12	0.14	
	vuTXG _{MIN}	_		0.10	0.12	0.14	
	vuTXB _{MIN}	_		0.10	0.12	0.14	
	⊿vuTXR	_		15.5	17.0	18.5	
	⊿vuTXG	_		15.5	17.0	18.5	dB
	⊿vuTXB	_		15.5	17.0	18.5	
Analan DCD Brightness Cantral	Vbr _{TXMAX}	_		3.3	3.5	3.7	
Analog RGB Brightness Control	VbrTXCNT	_	(Note T ₂₄)	2.85	3.05	3.25	V
Characteristic	Vbr _{TXMIN}	_		2.45	2.65	2.85	
Analog RGB Brightness Control Sensitivity	GbrTX	_	(Note T ₂₅)	6.0	6.8	7.6	mV
Analog RGB Mode ON Voltage	VTXON	_	Pin 32	0.65	0.85	1.05	V
	TXACL1	_		- 2	– 1	- 0.05	
Tout ACL Characteristic	TXACL2	_	(Note Tee)	- 6.5	- 4.5	- 2.5	40
Text ACL Characteristic	TXACL3	_	(Note T ₂₆)	- 6.5	- 4.5	– 2.5	dB
	TXACL4	_		- 16.5	- 15.0	– 13.5	
	GOSDR	_		4.1	4.8	5.4	
Analog OSD Gain	GOSDG	_	(Note T ₂₇)	4.1	4.8	5.4	times
	GOSDB	_		4.1	4.8	5.4	
Analan OSD Cain Triavial Difference	GOSD _G / R	_	G/R	0.94	1.00	1.06	
Analog OSD Gain Triaxial Difference	GOSD _B / R	_	B/R	0.94	1.00	1.06	_
	GfOSDR	_		25	30		
Analog OSD Band Width	GfOSDG	_	at -3dB point	25	30		dB
	GfOSDB	_		25	30		
	VOSD1R	_		1.80	2.00	2.20	
	Vosd1G	_		1.80	2.00	2.20	
Analan OSD White Book Slice Lavel	V _{OSD1B}	_	(Note Tee)	1.80	2.00	2.20	,,
Analog OSD White Peak Slice Level	V _{OSD2R}	_	(Note T ₂₈)	1.45	1.65	1.85	V _{p-p}
	V _{OSD2G}	_		1.45	1.65	1.85	
	V _{OSD2B}			1.45	1.65	1.85	

CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	V _{OSD3R}	_		2.10	2.26	2.42	
Analog OSD Black Peak Limiter Level	V _{OSD3G}	_	(Note T ₂₉)	2.10	2.26	2.42	
	V _{OSD3B}	_		2.10	2.26	2.42	
	Vosddcr			2.3	2.5	2.7	V
Analog OSD Output DC Voltage	Vosddcg	_	(Note T ₃₀)	2.3	2.5	2.7	
	VOSDDCB	_		2.3	2.5	2.7	
Analog OSD Mode ON Voltage	Vosdon	_	Pin 36	2.05	2.30	2.55	
	OSDACL1	_		_	0	_	
OSD ACL Characteristic	OSDACL2	_	(Note Tall)	_	0	_	
OSD ACL Characteristic	OSDACL3	_	(Note T ₃₁)	- 6.5	- 4.5	- 2.5	dB
	OSDACL4	_		- 16.5	– 15	- 13.5	
Crosstalk of RGB Inputs	GCT	_	_	_	- 50	- 45	

COLOR DIFFERENCE SECTION

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
		vuCY _{MAX}	_		1.5	1.8	2.13	
Color Difference Signal Con-	trast	vuCYCNT	_	(Note A ₁)	0.85	1.0	1.2	V _{p-p}
Control Characteristic		vuCYMIN	_	(Note A1)	0.24	0.29	0.355	
		⊿vuCY	_		14.0	15.5	17.0	dB
		vuCYMAX	_		1.18	1.4	1.68	
		vuCYCNT	_		0.73	0.86	1.04	V_{p-p}
Color Control Characteristic		vuCYMIN	_	(Note A ₂)	0.076	0.090	0.108	
		⊿vuCY +	_		3	4	5	dB
		⊿vuCY –	_		- 20	- 18	– 16	ав
	00	θ R90	_		88	90	92	
B. V. Bolotivo Bhoso	01	θ R93	_	_	90	92	94	0
R - Y Relative Phase	10	θ R96	_		92	94	96	
	11	θ R ₁₁₂	_		109			
	00	vR56/vB	_		0.55	0.58	0.61	
R - Y Relative Amplitude	01	vR68/vB	_		0.67	0.7	0.73	times
K-1 Kelative Amplitude	10	vR76 / vB	_	_	0.78	0.81	0.84	umes
	11	vR84/vB	_		0.85	0.88	0.91	
	00	θ G ₂₃₆	_		234	237	240	
G - Y Relative Phase	01	θ G ₂₄₀	_		238	241	244	0
G - F Relative Filase	10	θ G ₂₄₄	_	_	242	245	248	
	11	θ G ₂₅₃	_		251	254	257	
	00	vG _{30 / vB}	_		0.275	0.300	0.325	_
G V Polativo Amplituda	01	vG _{325 / vB}			0.300	0.325	0.350	
G-Y Relative Amplitude	10	vG _{35 / vB}	_	_	0.325	0.350	0.375	
	11	Gv _{375 / vB}	_		0.350	0.375	0.400	times
Color Difference Half-Tone	R	GHT _{RY}	_		0.47	0.50	0.53	
Gain	G	GHTGY	_	(Note A ₃)	0.47	0.50	0.53	
Cani	В	GHTBY			0.47	0.50	0.53	

CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
		Vγ1	_		0.09	0.23	0.37	
Color of Characteristic		Vγ2	_	(Noto A.)	0.23	0.37	0.51	V _{p-p}
Color γ Characteristic		Vγ3	_	(Note A ₄)	0.38	0.52	0.66	
		Δγ	_		0.65	0.75	0.85	_
Color Limiter Characteristic		CLT0	_	/Noto A=\	1.45	1.65	1.85	W
Color Limiter Characteristic		CLT1	_	(Note A ₅)	1.8	2.0	2.2	V _{p-p}
High Bright Color Gain		HBC1	_	(Note A ₆)	0.02	0.04	0.06	times
	Max	θ TRMAX	_	R	29	33	37	
Base Band Tint Control	IVIAX	θ TB _{MAX} — B	В	29	33	37	۰	
Characteristic	Min	θ TRMIN	_	R	- 37	- 33	- 29	
	IVIIII	θ TBMIN	_	В	- 37	- 33	- 29	
Flesh Color Characteristic		Fa33	_	(Note A7)	0.38	0.48	0.58	_
Color Difference Signal Inpu	ıt	DR _{R-Y}	_		0.9	1.2	1.5	.,
Dynamic Range		DR _{B-Y}	_	_	0.9	1.2	1.5	V _{p-p}
Color Dotail Emphasis Chara	ctorictic	GCD0	_	(Note As)	15.0	18.0	21.0	.,
Color Detail Emphasis Characteristic		GCD1	_	(Note A ₈)	_	- 15.0	0.0	V _{p-p}
Phase Shift at IO NIV Carry			_		31	33	35	۰
Phase Shift at IQ→UV Conv	5121011	θ _{I→U} θ _{Q→V}	_	_	31	33	35	

DEF SECTION

CHARACTERISTIC	С	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
32f _H VCO Oscillation Start	: Voltage	Vvco	_	DEE V. Valtaria	3.1	3.4	3.7	.,
Horizontal Output Start V	oltage	VH _{ON23}	_	DEF V _{CC} Voltage	4.7	5.0	5.3	V
Horizontal Output Duty C	ycle	T ₂₃	_	Pin 23	38.5	40.5	42.5	%
Horizontal Output Free-Ru	ın	f _{H050}	_	Vertical freq. ; Auto	15475	15625	15775	
Frequency		fH060	_	Vertical freq. ; 60Hz	15585	15734	15885	Hz
Variable Range of Horizor	ntal Output	fHMIN	_	Variable pin 20	14700	15000	15300	
Frequency		fHMAX	_	voltage	16500	16700	16900	
Horizontal Output Freque Sensitivity	ncy Control	βН	_	(Note D ₁)	180	230	280	Hz / 0.1V
Horizontal Output	High Level	V _{H23}	_	Pin 23	2.7	3.0	3.3	V
Voltage	Low Level	V _{L23}	_	FIII 23	_	0.15	0.30	V
		SPH1	_		11.1	11.3	11.5	
Horizontal Output Phase		SPH2	_	(Note D ₂)	0.35	0.45	0.55	
		SPH3	_	_	0.11	0.21	0.31	
Curve Correction Characte	ristic	∆H24	_	(Note D ₃)	2.3	2.5	2.7	v
Variable Range of Horizor Position	ntal Picture	∆H _{SFT}	_	(Note D ₄)	5.7	6.2	6.7	V
Clamp Pulse Start Phase		CPS	<u> </u>		2.8	2.9	3.1	
Clamp Pulse Width		CPW	_	(Note D ₅)	1.0	1.2	1.4	
Threshold of External Clar Input	np Pulse	CP _{V30}	-	Pin 24	3.3	3.6	3.9	
Threshold of External Clar Switching	np Mode	CPM _{V23}	_	Pin 23	8.5	8.7	8.9	V
Threshold of External Blac	k Peak	BPv17	_	Pin 17, at normal scan	0.9	1.1	1.3	
Hold Stopping Pulse		BPv24	_	Pin 24, at doble scan	0.9	1.1	1.3	_
SPC Gate Pulse Start Phase	9	GPS	_	(Note Da)	1.9	2.1	2.3	
SPC Gate Pulse Width		GPW	_	(Note D ₆)	1.9	2.1	2.3	
SPC Horizontal Blanking P Phase	ulse Start	HPS	_	(Note D-)	4.6	4.8	5.0	μ s
SPC Horizontal Blanking P	ulse Pulse	HPW50	_	(Note D ₇)	9.9	10.4	10.9	
Width		HPW60			10.5	11.0	11.5	

HD Output Start Phase	CHARACTERIST	IC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
HD Output Voltage	HD Output Start Phase		HDS			0.7	0.9	1.1	
Threshold of AFC-2 Detection VHBLK1 — Pin 25, at normal scan 3.2 3.5 3.8 NHBLK2 — Pin 35, at normal scan 3.2 3.5 3.8 NHBLK2 — Pin 35, at normal scan 3.2 3.5 3.8 NHBLK2 — Pin 35, at normal scan 3.2 3.5 3.8 NHBLK2 — Pin 35, at normal scan 3.2 3.5 3.8 NHBLK2 — Pin 35, at normal scan 3.2 3.5 3.8 NHBLK2 — Pin 35, at normal scan 3.2 3.5 3.8 NHBLK2 — Pin 35, at normal scan 3.2 3.5 3.8 NHBLK2 — P	HD Output Pulse Width		HDW	_	(Note D ₈)	0.7	0.9	1.1	μ s
Detection	HD Output Voltage		VHD	_]	4.5	4.8	5.1	
Detection Threshold of Horizontal Timing VHBLK2 — Pin 25, at doble scan 3.2 3.5 3.8 VHBLK3 — Pin 25, at doble scan NHBLK3 — Pin 31	Threshold of AFC-2				Pin 25, at	2.7	2.5	2.0	
Timing VHBLK2 — doble scan 3.2 3.5 3.8 3.8 Threshold of Blanking Pulse VHBLK3 — Pin 25, H/V blanking 0.8 1.1 1.4 Vertical Blanking Pulse Start Phase VP50S1 — (Note Dg) 46 48 50 2.5 Vertical Blanking Pulse Stop Phase VP50S2 — (Note Dg) 46 48 50 2.5 Vertical Blanking Pulse Stop Phase VP60S1 — (Note Dg) 46 48 50 2.5 Vertical Blanking Pulse Stop Phase VP60S2 — (Note Dg) 46 48 50 2.5 Vertical Blanking Pulse Stop Phase VP60S2 — (Note Dg) 46 48 50 2.5 Vertical Blanking Pulse Stop Phase VP60S2 — DEF VcC voltage 4.7 5.0 5.3 V Vertical Output Start Voltage fv060 — Vertical freq.; doltate 48 53 58 58 Vertical Output Voltage VVH — VVL — Vertical freq.; doltate 48 53 58 58 Vertical Pull-In Range (1) fpL1 — FpH1 — FpH2	Detection		VHBLK1	-	normal scan	3.2	3.5	3.8	
Threshold of Blanking Pulse VHBLK3 — Pin 25, H/V blanking 0.8 1.1 1.4	Threshold of Horizontal		.,		Pin 25, at	2.2	2.5	2.0	V
Netrical Blanking Pulse Start Phase VP50S1 — Vertical Blanking Pulse Start Phase VP50S1 — Vertical Blanking Pulse Start Phase VP60S1 — Vertical Blanking Pulse Start Phase VP60S1 — Vertical Blanking Pulse Start Phase VP60S2 —	Timing		VHBLK2	-	doble scan	3.2	3.5	3.8	
Vertical Blanking Pulse Storp Phase VP50S2 VP60S1 Net Control (Note D10) — 23 Med March Marc	Threshold of Blanking Pu	ulse	V _{HBLK3}	_		0.8	1.1	1.4	
Vertical Blanking Pulse Storp Phase VP50S2 VP60S1 Net Control (Note D10) — 23 Med March Marc	Vertical Blanking Pulse S	tart Phase	VP _{50S1}	_	(Note De)	46	48	50	μs
Vertical Blanking Pulse Start Phase VP60S1 — VP60S2 — V	Vertical Blanking Pulse S	top Phase		_	(Note Dg)	_	23	_	Н
Vertical Blanking Pulse Stop Phase VP60S2 — (Note D10) — 21	Vertical Blanking Pulse S	tart Phase	VP _{60S1}		(Note Dis)	46	48	50	μs
Stateman Blanking Threshold Current	Vertical Blanking Pulse S	top Phase		1 —	(Note D ₁₀)	_	21	_	
Voltage	Threshold Current	353H		_	· ·	150	300	400	μΑ
Vertical Output Free-Run Frequency High Level Low Level TV050 — Auto 40 45 50 Hz Vertical Output Voltage Low Level fv060 — Vertical freq.; 60Hz 48 53 58 Hz Vertical Output Voltage Vertical Pull-In Range (1) Typin 31 4.7 5.0 5.3 7 7 5.0 5.3 7 7 5.0 5.3 7 7 7 5.0 5.3 7 7 7 5.0 5.3 7 7 7 5.0 5.3 7 7 7 7 5.0 5.3 7 <td< td=""><td></td><td>297H</td><td>VON</td><td>_</td><td>DEF V_{CC} voltage</td><td>4.7</td><td>5.0</td><td>5.3</td><td>٧</td></td<>		297H	VON	_	DEF V _{CC} voltage	4.7	5.0	5.3	٧
Vertical Output Voltage	Vertical Output	High Level	f _{V050}	_	•	40	45	50	ш-
Volume	Free-Run Frequency	Low Level	fv060	_	•	48	53	58	П
Volume	Vertical Output Veltage		V_{VH}		Pin 31	4.7	5.0	5.3	\ \/
Vertical Pull-In Range (1)	Vertical Output Voltage		V_{VL}	_		_	0.0	0.3	\ \ \
(1) fPH1	Vertical Pull-In Range					_	224.5	_	
Vertical Pull-In Range (2) FPH2	(1)			_]	_	353	_	
The color of the	Variable Bulling Broom (2)		f _{PL2}	_	(Nata D.)	_	224.5	_	1
Vertical Pull-In Range (3) F _{50P} — Vertical Pull-In Range (4) F _{60P} — 288.5 — 288.5 — 288.5	Vertical Pull-in Range (2))		 	(Note D ₁₁)		297	_	"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vertical Pull-In Range (3)			—	1	_	288.5	_	1
RGB Vertical Blanking Pulse Start Phase (1) RGB Vertical Blanking Pulse Stop Phase (1) RGB Vertical Blanking Pulse Stop Phase (1) RGB Vertical Blanking Pulse Stop Phase (2) RGB Vertical Blanking Pulse Store Phase (2) VR50S2 — VR50S2 — VR50S2 — VR60S1 — VR60S1 — VR60S1 — VR60S1 — VR60S2	Vertical Pull-In Range (4)			1 —		_	288	_	1
VG50S1 — VB50S1 — VR50S2 — VG50S2 — VG50S2 — VG50S2 — VG50S2 — VR50S2 — VR60S1 — VR60S1 — VR60S1 — VR60S1 — VR60S1 — VR60S1 — VR60S2	565 14 41 15 5			—		44	46	48	
VB 50S1		use Start		1 —	1	44	46	48	μ s
RGB Vertical Blanking Pulse Stop Phase (1) RGB Vertical Blanking Pulse Start Phase (2) RGB Vertical Blanking Pulse Start Phase (2) VR50S2 — VR60S1 — VR60S1 — VR60S1 — VR60S1 — VR60S2 — VR60	Phase (1)		VB50S1	1 —	1				,
VG _{50S2}	Den 1/ // 1 = 1 1 =			1 —	(Note D ₁₂)	_	19	_	
VB _{50S2}	_	use Stop		1_	1		19	_	Н
	rnase (1)			+	1			l _	
VG60S1 — VB60S1 — VR60S2 — VR60S2 — VG60S2 — VG60S2 — VG60S2 — VG60S2 — H H VG60S2 — VG60S2						44		48	
VB 60S1	1	ulse Start		_	1	44	46	48	μs
RGB Vertical Blanking Pulse Stop Phase (2) VR _{60S2} — VG _{60S2} — H	Phase (2)			<u> </u>	1				′
Phase (2) VG _{60S2} — H				† <u> </u>	(Note D ₁₃)	_		_	
Phase (2)	•	ılse Stop		† <u> </u>	1	_	_	_	Н
, , , , , , , , , , , , , , , , , , ,	Phase (2)		VB _{60S2}	 	1		17	_	

TEST CONDITIONS

						() () () () () () () () () ()
					S ON	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 5V, TA = 2.3 ± 5 C)
NOTE	PARAMETER	SW	TCHIL	SWITCHING MODE	DE	SNOILIGNOS LEST
		SW ₁₅	SW49	5 SW49 SW50 SW53	SW53	
						_
					_	① SW13:A, SW18:ON, SW20:ON, SW23:ON, SW33:A, SW34:A, SW35:A,
					_	SW37 : A, SW38 : A, SW39 : A, SW46 : ON, SW51 : B, SW52 : B
	Video Block					② For testing, see the picture sharpness AC characteristics testing circuit diagram. After
					_	using the preset values to transmit the BUS control data, set ACB operation
						switching to ACB off (01).
					_	③ Ensure the composite signal is always input to pin 15 (Y1/sync input).
						① Set the BUS control data to the preset value.
					_	② Connect pin 53 to an external power supply (PS) and observe pin 50.
						③ Turn the Y mute off (1), turn the black stretch gain off (1), and set the black detect
						level to OIRE (1).
						(4) Increase the PS voltage from 5V and measure the DC differential VB of pin 49
						where the picture period (high period) of pin 50 goes low.
						(a) Set the black detect level to 3IRE (0).
۲	Black Detect Level	U	OFF	U	U	
	Snirt				_	bin 49
						\V_B\V_83
]
	-					pin 25
						(1) Set the BUS control data to the preset value.
						© Set SW ₅₀ to A (maximum gain) and input a 500kHz sine wave to TP53.
						\odot Use pin 53 to adjust the signal amplitude to $0.1V_{\rm p.p.}$
:		•	•	•	<	Turn the Y mute off (1), turn the black stretch gain off (1), and measure the
^2	Maximum Gain	-		1	1	amplitude V _A of pin 49.
						(a) Turn the black stretch gain on (0) and measure the amplitude VB of pin 49.
						© Calculate the G _{BS} using the following formula.
						$G_{BS} = V_B \div V_A$

TA1276AN-35

NOTE PARAMETER SWITCHING MODE SW15 SW49 SW50 SW53 (a) Set the Bil (b) Set SW50 gain off. (b) Set Sw50 gain off. (c) Set the Bil (c) Set Sw50 gain off. (d) Set the Bil (c) Set Sw50 gain off. (e) Set the bil (c) Set the bil (c) Set Sw50 gain off. (e) Set the bil (c) Set Sw50 gain off. (e) Set the bil (c) Set Sw50 gain off. (e) Set the bil (c) Set Sw50 gain off. (e) Set Sw50 gain off. (f) Set Sw50 gain off. (e) Set Sw50 gain off. (f) Set Sw50 gain off. (e) Set Sw50 gain off. (f) Sw50 g	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} /V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ± 3°C) TCHING MODE	TEST CONDITIONS	1 Set the BUS control data to the preset value. 2 Set SW ₅₀ to A (maximum gain), turn the Y mute off (1), and turn the black stretch	gain off. Connect pin 53 to an external power supply (PS), increase the voltage from V _{S3} , and	plot the resulting change in voltage S ₁ of pin 49. Next, turn the black stretch gain on (0), set the black stretch point 1 to the minimum (000) increase the PS voltage from Vra as in (3) and plot the resulting	change in voltage 52 of pin 49.	V _{S3} as in ®, and plot the change in voltage S ₃ of pin 49.	and 5s. Use the following formulas to calculate PBST1 and PBST2. PBST1 [(IRE)] = ((VBST1 [V] - V49 [V] + 14 [V]) × 100 [(IRE)]	$PBST2[(iRE)] = ((VBST2[V] - V49[V] \div 1.4[V]) \times 100[(iRE)]$	uid.	S ₃ S ₁		VBST1	S ₂ (Asymptotic line)	V49 III	
Black Stretch Start C	NS (UNLES	33							PBS							
Black Stretch Start C	NDITIO	50 SW5														
Black Stretch Start C	ST CO	49 SW								•						
PARAMETER Black Stretch Start Point (1)	1 1	/15 SW						 							····	
		SK														
NOTE V ₃	PARAMETER								Black Stretch Start Point (1)			-				
	NOTE) }			,				× ×							

rest conditions (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25±3°C)	TEST CONDITIONS	① Set the BUS control data to the preset value. ② Turn the black stretch gain off (1), turn the Y mute off (1), and turn the video	mute off (0). Input the TG7 linearity to TP53, use pin 53 to adjust the amplitude as in the	diagram, set unicolor to the center (1000000), and measure the resulting amplitude (V43) of pin 43 (R OUT). Turn the black stretch gain on (0), connect pin 49 to an external power supply (PS),	and measure pin 43 (R OUT). When the black stretch start point 2 data are at the minimum (000), calculate as in	the diagram the black stretch start point differential Δ V ₀₀₀ for when P is V ₄₉ (APL 0%) and for when P is V ₄₀ + 1.0 [V] (APL 100%).	Next, when the black stretch start point 2 data are maximum (111), calculate	differential AV111 in the same way. Calculate the following formulas.	$PBS1 = (\Delta V_{000} / V_{43}) \times 100$ $PBS2 = (\Delta V_{111} / V_{43}) \times 100$	LINEARITY	APL 100%	0.7V ₀ -ρ	· · · · · · · · · · · · · · · · · · ·	N) (5-11)
U) SNC	,53	ļ		<u> </u>	•		<u>(i)</u>	<u>(()</u>						
NDITIC	MODE 50 SW							······································			······································			
ST CO	CHING MODE W49 SW50 SW													
	SW/15 SW49 SW50 SW53							2			····			
	SW													
	PARAMETER				-			Black Stretch Start	Point (2)		-			
	NOTE							,	4					

TC MASTCH

			TEST	COND	TIONS	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} /V _{CC3} / DEF V _{CC} = 9V, Ta = 25±3°C)
NOTE	PARAMETER	SWIT	ITCHIN	CHING MODE	DE	SINOITIQINOS ESTE
		SW15 S	SW49	W49 SW50 SW53	SW53	LEST CONDITIONS
						① Set the BUS control data to the preset value.
						② Turn the Y mute off (1), set the ABL sensitivity to the minimum (000), set the D.ABL
						sensitivity to the maximum (111), and turn the black stretch gain off (1).
						3 Connect pin 45 to an external power supply (PS) and decrease the voltage from
						6.5V.
	-					Repeat when the D.ABL detect voltage bus data are 000, 001, 010, and 100
						respectively. Measure PS voltages V000, V001, V010, and V100 when the picture
						period of pin 49 changes to low. (Enlarge the range before measuring.)
						\odot Next, calculate the ΔV_{001} , ΔV_{010} , and ΔV_{100} voltage differentials from V_{000} and
						V ₀₀₁ , V ₀₁₀ , and V ₁₀₀ .
\ 2	D.ABL Detect Voltage	U	HO	⋖	U	$\Delta V * * * = V_{000} - V_{001} (V_{010}, V_{100})$
						CA AND
						יוון אַ עומפּיפּרנפּמ
						Pin 49 detected
Make Salah						Pin 25
					-	

EST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ± 3°C)	TEST CONDITIONS	\oplus Set the BUS control data to the preset value. \otimes Turn the Y mute off (1), turn the black stretch gain off (1), and connect pin 45 to	an external power supply. With the D.ABL detect voltage at the minimum (000), plot the voltage characteristics of pin 49 in relation to the voltage of pin 45 when D.ABL sensitivity is at the maximum (111).	A From the diagram, calculate the SDAMIN and SDAMAX gradients. SDAMIN, SDAMIN, SDAMIN,	Pin 49	100%	9601	Pin 45		 Set the BUS control data to the preset value. Turn the Y mute off (1), turn the black stretch gain off (1), and observe pin 49. Turn the black level compensation on (1), measure ΔV₁ [mV], and calculate the following formula. BLC = (ΔV₁/1.14 × 10³) × 100 (IRE) 	Picture period	Δν، (mν)	
TIONS	JE SW53	 			J						←		
CONDI	SW15 SW49 SW50 SW53	3			⋖						← ı		
TEST	SWITCHIN	2			NO						0FF		
	SW ₁ 5	-			U				-		←		
	PARAMETER				D.ABL Sensitivity						Black Level Compensation		
	NOTE				9>						, V ₇		

TA1276AN - 39

			TEST	COND	ITIONS	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25±3°C)
NOTE	PARAMETER	SW ₁₅	SWITCHING MODE	IG MO	DE SW53	TEST CONDITIONS
6>	DC Transmission Rate Compensation Gain	SW15	C ON B C	SW _{5Q}	SW53	 ⑤ Set the BUS control data to the preset value. ⑥ Turn the Y mute off (1), turn the video mute off (0), and connect pin 53 to an external power supply (PS). ⑥ Measure the amplitude V43 of pin 43, set the PS to V53 + 0.7V, and adjust V43 to 0.7V_{p-p} using unicolor. ⑥ With the DC transmission rate compensation gain at the minimum (000), measure ΔV₁ and ΔV₂ as in the diagram below. ⑥ Next, with the DC transmission rate compensation gain at the maximum (111), measure ΔV₃ and ΔV₄. ⑥ Calculate ADT100 and ADT130 from the following formula. ⑥ Calculate ADT100 and ADT130 from the following formula. ADT100 = (ΔV₂ [V] - ΔV₁ [V]) ÷ 0.1 [V] ADT130 = (ΔV₄ [V] - ΔV₃ [V]) ÷ 0.1 [V]
						V53 + 0.2 [V]

1276AN - 41

11276 AM - 42

TEST CONDITIONS (UNLESS OTHERWISE STATED, $V_{CC1} = 5V$, $V_{CC2}/V_{CC3}/DEF$ $V_{CC} = 9V$, $Ta = 25 \pm 3^{\circ}C$)	TEST CONDITIONS	\oplus Set the BUS control data to the preset value. \otimes Turn the Y mute off (1), turn the video mute off (0), and with the unicolor set at	maximum (1111111), connect pin 49 to an external power supply (PS). Set the DC transmission compensation rate to the maximum (111).	\oplus Increase the PS from 5V, observe pin 43, and plot the DC transmission compensation	rate. Repeat \oplus above but change the DC transmission compensation limit point data.	Calculate PDTL60, PDTL73, PDTL87, and PDTL100 from the measured data and the following formulas.	PDTL60 = $((V_{L60} - V_{49}) / 1.0) \times 100 [\%]$	PDTL73 = ((VL73 – V49) / 1.0) × 100 [%] PDTL87 = ((VL87 – V49) / 1.0) × 100 [%]	$PDT[100 = ((V[100 - V49)/7.0) \times 100[\%])$	C)A	100% (00)	87% (01)	73% (10)		uid • Vi Vi Vi	$V_{L/3}$ $V_{L/3}$ $V_{L/3}$	
TIONS	OE SWC3		<u> </u>	•	<u>(i)</u>					1					 		
CONDI	SWITCHING MODE								Ω.	1					 		
TEST	VITCHIN SW 40	g :							Z	:							
	SW SW4F								Ų.	,							
	PARAMETER								UC Transmission Compensation Limit	Point							
	NOTE								7								

CN - MA37614

			TEST	COND	SNOIT	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ±3°C)
H		77.0	T. C.		1	77 77 77 77 77 77 77 77 77 77 77 77 77
 Б П	rakalviel ek	SW ₁₅	SW49	SW15 SW49 SW50 SW53	SW53	TEST CONDITIONS
						① Set the BUS control data to the preset value.
						② Input a sine wave to TP53.
						③ Set the amplitude of pin 53 to 20mV _{p-p} .
						Set the unicolor to the maximum (1111111), set SHR tracking to SRT-gain low (11),
					_	and set the aperture compensator peak frequency to 4.2M (001).
						⑤ Turn the Y mute off (1), the video mute off (0), connect TP43 and TP41b, and
						observe TP41e.
	-					© Set the picture sharpness to the maximum (111111). When the frequencies are
						100kHz and F $_{ m APL01}$, measure the V $_{ m 100}$ and V $_{ m L}$ amplitudes respectively and calculate
	2					GMAXL by the formula shown below.
۷12		U	OFF	ω	∢	② Next, set the picture sharpness to the minimum (0000000). As in ⑥, when the
	Control Kange					frequencies are 100kHz and 2.4MHz, measure the V ₁₀₀ and V _L amplitudes
						respectively and calculate GMINL by the formula shown below.
						® Set the aperture compensator peak frequency to 7.7M (111) and the picture
	-					sharpness to the maximum (1111111). When the frequencies are 100kHz and
						FAPH11, measure the V100 and VH amplitudes respectively and calculate GMAXH by
						the formula shown below.
						® Next, set the picture sharpness to the minimum (0000000). When the frequencies are
		-				100kHz and 4MHz, measure the V ₁₀₀ and V _H amplitudes respectively and calculate
						GMINH by the following formula.
						$G****[dB] = 20 \times Log(V_L(H) \div V_{100})$
						① Repeat steps ① to ⑤ of V12.
						② With YNR on (1) and the picture sharpness at minimum (0000000), measure the
						TP41e amplitudes V ₁₀₀ and V _L when the input signal frequencies are 100kHz and
7		•	•	•		2.4MHz respectively.
v13	TINK Characlenshics	_		_	_	③ Next, set the aperture compensator peak frequency to 7.7M (111). When the input
	-					signal frequencies are 100kHz and 4MHz, measure the V ₁₀₀ and V _H amplitudes
			-			respectively and calculate GYL and GYH by the following formula.
						$G_{YL}(H)[dB] = 20 \times Log(V_{L}(H) \div V_{100})$

AN INVOCA

PARAMETER Pulse Response Control	TEST CONDITIONS (UNLESS OTHERWISE STATED, $V_{CC1} = 5V$, $V_{CC2} / V_{CC3} / DEF$ $V_{CC} = 9V$, $Ta = 25 \pm 3^{\circ}C$) SWITCHING MODE	W49 SW50 SW53	(1) Set the BUS control data to the preset value. (2) Input a 2T pulse (STD) signal to TP53, turn the Y mute off (1), turn the video mute off (0), set unicolor to maximum (1111111), and set SHR tracking to SRT-gain low	 (11). (3) Set the sharpness control to the center (1000000), set the aperture compensator peak frequency to 4.2M (001), connect TP43 and TP41b, and observe TP41e. (4) Measure Ts11 as in the diagram below. (5) Set SHR tracking to SRT-gain high (00) and measure Ts12. 	C ON B A TSRTL=TSL1 - TSL2 C SRTH=TSRTH=TSH1 - TSL2	10%
	PARAMETER				2T Pulse Response SRT Control	

11276 AM - 45

_	Τ-		_																	
TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)		IEST CONDITIONS	① Set the BUS control data to the preset value.	$ { { \bigcirc } }$ Input the frequency FVL sine wave to TP53.	3 Turn the Y mute off (1), turn the video mute off (0), set the aperture compensator	peak frequency to 4.2M (001), and set the amplitude of pin 53 to 0.1V _{n.n.}	(4) Measure the TP48 amplitudes VIng, VIng, VIng, and VIng in the following cases	VSM gain	0dB (00) →VL (H) 00	– 6dB (01)→VL (H) 01	– 9dB (10)→V ₁ (H) 10	OFF (11) →V_(H) 11	⑤ Input the sine wave of frequency FVH to TP53, set the aperture compensator peak	frequency to 7.7M (111), and measure the TP48 amplitudes VHOD, VHOD, VHOD, and	VH11 as above.	© Calculate the following formulas.	$GVL(H) 00 = 20 \times Log(VL(H) 00 / 0.1) [dB]$	$GVL(H) 01 = 20 \times Log(VL(H) 01/0.1) [dB] - 20 \times Log(VL(H) 00/0.1) [dB]$	$GVL(H) 10 = 20 \times Log(VL(H) 10/0.1) [dB] - 20 \times Log(VL(H) 00/0.1) [dB]$	GVL(H) 11 = 20 x Log ($VL(H)$ 00 / 0.1) [dB]
NOITION	DE.	SW5									<	1								
COND	G MC	SW ₅₀									c	۵								
TEST	SWITCHING MODE	SW49									2	<u>.</u>				_				
	SW	SW15 SW49 SW50 SW53									(,					-			-
	PARAMETER						-	-			Sie D NOV	30	-		-					
	NOTE										V.r. \	<u>.</u>		-						-

11276 A W - AG

			TEST	COND	NOLL	EST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER	SWI	TCHIN	SWITCHING MODE	DE	ONCILIONAL FOLL
		SW15	SW49	SW15 SW49 SW50 SW53	SW53	LEST CONDITIONS
						① Repeat steps ① to ③ of V_{15} . ② Turn on the VSM output horizontal parabola modulation (1) and set the VSM gain
						to odb (00).
						As in the diagram, measure the picture period amplitudes vcr, vnt, and vtr of TP48.
						 (a) Next, input the sine wave of frequency FVH to TP53, set the aperture compensator peak frequency to 7.7M (111), set the VSM horizontal parabola frequency to 31.5k
						(10), and measure the picture period amplitudes VCH, VRH, and VLH of TP48 as
						above. © Calculate GVRL, GVLL, GVRH, and GVLH from the following formulas.
						$GVRL(H) = 20 \times Log(VRL(H)/VCL(H))$ $GVLL(H) = 20 \times Log(VLL(H)/VCL(H))$
V ₁₆	VSM Horizontal Parabola Modulation	U	NO	Ω.	∢	— VCL (H)
	Gain					VLL (H)
	-			.*		
				-		7 - 20%
						⑤ In ③ and ④ above, turn the VSM output horizontal parabola modulation off (0)
		· ·				and check that no parabola modulation is generated on the picture period signal. (VPOFL, VPOFH)

TA1276AN - 47

		TES	T CON	DITION	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER	SWITCHING MODE	ING M	3DE	TEST CONDITIONS
		SW15 SW49 SW50 SW53	9 SW50	SW53	
					2 Repeat steps 1 to 3 of V ₁₅ , then observe pin 48. 2 Input a pulse like that shown below to pin 32 and measure the response time
					TVML1 (2) at that input. ③ Similarly, input the pulse to pin 36 and measure the response time TVML3 (4) at that
					input. (4) Input the sine wave of frequency FVH to TP53, set the aperture compensator peak
					frequency to 7.7M (111), and measure the response time IVMH1 (2) as in ② above. ⑤ Similarly, input the pulse to pin 36 and measure the response time TVMH3 (4) at the input.
				-	
-					Square wave (50kHz, 2V _{D-D})
V ₁₇	VSM High-Speed Mute Response Time	NO O	83	⋖	VSR36 [V]
					Pin 32 (Pin) TVML1 (3), TVMH1 (3)
					TVML2 (4), TVMH2 (4)
-				· · · · · ·	
					rin 48 waverorm

TA1276AN - 48

NOTE	PARAMETER		TEST	TEST COND	NOITIO	SWI	SWITCHING MODE	HERW G MOI	ISE ST,	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
		07	10	17	18	SW5	SW6	SW6 SW13 SW15	SW15	TEST CONDITIONS
	Chroma Block							<u> </u>		Chroma block common test conditions SW ₁₃ : B, SW ₁₅ : C, SW ₁₈ : ON, SW ₂₀ : ON, SW ₂₃ : ON, SW ₂₄ : ON, SW ₂₅ : ON, SW ₃₃ : A, SW ₃₄ : A, SW ₃₅ : A, SW ₃₇ : A, SW ₃₈ : A, SW ₃₉ : A, SW ₄₆ : ON
r r	ACC Characteristics	80	00	00	00	OPEN OPEN	OPEN	ω	A	 Input 3.58-NTSC rainbow signal (C-4 signal) burst/chroma signals with the same burst/chroma amplitude to the chroma input pin (TP13). Measure the output amplitudes F10, F30, F300, and F600 of the UQ output pin 5 when the chroma input amplitude levels are set to 10, 30, 300, and 600mV_{p-p}. Calculate A = F30/F300.
C2	APC Frequency Control Sensitivity	←	←	←	-	←	←	⋖	-	 ① Connect SW₁₃ to A. ② Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL (80) and measure the following for each of those cases. ③ Connect external voltage source (V₁₁) to APC filter pin 11. ④ Vary the voltage of the external voltage source (V₁₁) and observe the fsc output pin 1 using a frequency counter. ⑤ Measure the free-run sensitivity β for the V₁₁ + AV₁₁ (100mV) near the fc. (3.5 NTSC = β₃, 4.3; PAL = β₄; M-PAL = β_M)
C3	APC Pull-In and Hold Range	←	←	←	-	-	←	←	← **	 ① Input 3.579545MHz, 4.433619MHz, and 3.575611MHz continuous waves (200mV_{p-p} to the chroma input pin (TP13). ② Switch the color system mode (10) to 3.58 NTSC (00), 4.43 PAL (60), and M-PAL (80), and measure the following for each of those cases. ③ Vary the input signal frequency in 10Hz-steps within a range of ±3kHz. ④ Clamp B/W→color mode (f*P*). ◆ While holding color→B/W mode (f*H*), measure the ± deviations from the frequency at each continuous wave input.

NOTE PARAMETER SECAM Output DC Level Change Co NTSC Ident Sensitivity									25 217	EST CONDITIONS (UNLESS OTHERWISE STATED, VCC1=5V, VCC2/VCC3/DEF VCC=9V, Ta=25±3 C)
		S	SUBADDRESS	SESS		SWIT	SWITCHING MODE	3 MOL	핏	TECT CONDITIONS
L		07	10	17	18	SW5 SW6 SW13 SW15	s 9MS	W13 5	3W15	
										① Connect SW13 to A.
				00						② Measure the output DC level of the SECAM control pin 3
				or						when the color system mode (10) is switched to 3.58 NTSC
	,	80	<u>۔</u> ن	30	8	OPEN OPEN	DPEN	4	⋖	(00), 4.43 PAL (30), and SECAM (60).
				ō		-				(3.58 NTSC mode: SEN)
				09						(4.43 PAL mode : SEP)
										(SECAM mode : SES)
										① Input a 3.58-NTSC rainbow (C-4 signal) burst / chroma signal
										with the same burst/chroma amplitudes to the chroma
										input pin (TP13).
										② Observe the BUS READ mode (5th and 6th bits of the 1st
				-						byte).
										3 Switch the Indent sensitivity (set the subaddress (10) data
			9		-					low (C ₀) and high (D ₀)) and perform the following
		<u> </u>	or	00	<u></u>	←	←	В	<u>—</u>	measurements.
			00							\oplus Increase the input signal amplitude from 0 and measure the
										input signal amplitude at the switch to 3.58 NTSC mode.
,										(LOW (C ₀): vN _C L, High (D ₀): vN _C H)
	-		-							© Lower the input signal amplitude from 100mV _{p-p} and
										measure the input signal amplitude at the deviation from
										3.58 NTSC mode.
										(LOW (C ₀) : vN _B L, High (D ₀) : vN _B H)

NOTE			TFST	CNCC	SNOIL		SS	HERV	SEST	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
	PARAMETER		SUBAD	ADDRESS		SW	TCHIN	SWITCHING MODE)E	TEST COMPITIONS
		07	10	17	18	SW5	SW6	SW6 SW13 SW15	3W15	
										① Input a 4.43-PAL rainbow (C-4 signal) burst / chroma signal
										with the same burst/chroma amplitude to the chroma input
										pin (TPTS). ② Observe the BUS READ mode (5th and 6th bits of the 1st
										Switch the Indent sensitivity (set the subaddress (10) data
			G							low (C ₀) and high (D ₀)) and perform the following
ڻ	PAL Ident Sensitivity	80	o o	00	00	OPEN OPEN	OPEN	<u>а</u>	⋖	measurements
•			D							① Increase the input signal amplitude from 0 and measure the
)							input signal amplitude at the switch to 4.43 PAL mode.
										$(LOW(C_0) : vP_{CL}, High(D_0) : vP_{CH})$
										⑤ Lower the input signal amplitude from 100mV _{p-p} and
					-					measure the input signal amplitude at the deviation from
					_					4.43 PAL mode.
										$(LOW(C_0) : vP_{BL}, High(D_0) : vP_{BH})$
										① Input the signal C-1 to the chroma input pin.
										(Signal amplitude = 50mV_{p-p}).
								-,-		② When the subaddress (10) data are $f_0 = 3.58MHz$ (00) and
										$f_0 = 4.43 MHz$ (60), and subaddress (18) data are (38),
										connect 1.5k\O between the V _I output pin 6 and the 5V-V _{CC}
	-									and observe the V _I output pin 6.
										\odot Measure the output amplitude when f ₀ = 3.58MHz and
		•	3	•	Ċ	•	•	•	<	calculate the gain in decibels from the input (GFC3).
C2	TOF Characteristics		ō		38	<u></u>	-			$\textcircled{4}$ Measure the output amplitude when $f_0 = 3.58 \text{MHz} \pm 500 \text{kHz}$
			9							and calculate the gain in decibels from the input
										(+500kHz : GF _{H3} , -500kHz : GF _{L3}).
										© Measure the output amplitude when fo = 4.43MHz and
										calculate the gain in decibels from the input (GFC4).
										6 Measure the output amplitude when f ₀ = 4.43MHz ± 500kHz
										and calculate the gain in decibels from the input
										(+500kHz : GF _{H4} , -500kHz : GF _{L4}).

			TEST	COND	TIONS	(UNLE	SS OTH	HERWI	SE STA	TED,	EST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER				SWITCHING MODE	HING N	10DE				TEST CONDITIONS
		SW33	SW34	SW35	SW33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	SW38	3W39 5	W51 5	SW52	SW 53	
	Text Block										Text block common test conditions SW ₁₃ : A, SW ₁₅ : C, SW ₁₈ : ON, SW ₂₀ : ON, SW ₂₃ : ON, SW ₂₄ : ON, SW ₂₅ : ON
										<	① Input signal 1 (f ₀ = 100kHz, picture period amplitude = 0.2V _{p-p}) to pin 53. ② Measure the picture period amplitude of pins 41, 42,
-	AC Gain	∢	∢	∢	4	∢	∢	α	'n	4	43 (v41, v42, and v43). (3) GR = V43/0.2 GG = V42/0.2 GB = V41/0.2
											① Input signal 1 ($f_0 = 100$ kHz, picture period amplitude = $0.2V_{p-p}$) to pin 53. ② Set the unicolor data to maximum (7F), center (40),
T ₂	Unicolor Adjustment Characteristics	←	←	· ←	←	(←	←	-	←	and minimum (00) and measure the pin 43 picture period amplitudes for each case. (v _u MAX, v _u CNT, v _u MIN) ③ Calculate the unicolor maximum and minimum amplitude ratios using digital conversion. (Δv _u)
<u>ε</u>	Brightness Adjustment Characterístics	←	←	←	-	←	←	←	←	←	 Input signal 2 to pin 53 and adjust the picture period amplitude output of pin 43 to 1V_{p-p}. Measure the voltage of pin 43 when the brightness is changed to maximum (FF), center (80), and minimum (00). (VbrMAX, VbrCNT, VbrMIN)
T 4	Brightness Sensitivity	← '	←	←	←	←	←	← `	←	←	
<u>F</u>	White Peak Slice Level	←	←	←	←	←	←	←	←	· ←	 ① Change the bus data and set the sub-contrast to maximum. ② Connect an external power supply to pin 53 and increase the voltage gradually from 5.8V. ③ Measure the picture period amplitude voltage of pin 43 when pin 43's picture period is clipped (Vwps1). ④ Change the subaddress (05) data to (81) and repeat steps ① to ③ above. (Vwps2)

			TEST	CONDI	ITIONS	(UNLE	SS OTI	HERWI	SE STA	TED,	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25±3°C)
NOTE	PARAMETER			,	SWITCHING MODE	ING N	NODE				SINOITICINOS TSET
		SW33		SW35	SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	SW38	SW39 5	W51 S	SW52	3W53	LEST CONDITIONS
T ₆	Black Peak Slice Level	. ∢		∢	∢	∢	∢	В	ω	!	① Repeat step ① of T ₅ . ② Connect an external power supply to pin 53 and decrease the voltage gradually from 5.8V. ③ Measure the voltages of pins 41, 42, and 43 when their picture periods are clipped.
T ₈	Half Tone Characteristics BLK Pulse Delay Time	· ←	←	←	←	-	←	←	← ←	. 4	(1) Input signal 1 (f ₀ = 100kHz, picture period amplitude = 0.2V _{p-p}) to pin 53. (2) Measure the picture period amplitude of pin 41 (V41 _A). (3) Apply 1.5V from an external power supply to pin 47. (4) Measure the picture period amplitude of pin 41 (V41 _B). (5) GHT1 = V41 _B / V41 _A (6) Halt the voltage applied to pin 47, set the subaddress (03) data to (81), and measure the picture period amplitude of pin 41 (V41 _C). (6) GHT2 = V41 _C / V41 _A (7) GHT2 = V41 _C / V41 _A (8) Calculate t _d O _N , t _d O _F from the signal applied to pin 25 (H.BLK input) (A below) and the output signals from pins 41, 42, and 43 (B below). (6) Signal applied to pin 25
Т9	RGB Output Voltage	←	←	-	←	←	←	←	←	←	① Measure the picture period voltages for pins 41, 42, and 43.

			TEST	COND	ITIONS	(UNLE	SS OT	HERWI:	SE STA	TED,	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER				SWITCH	SWITCHING MODE	NODE				SINOITIQNOO TSET
		SW33	SW34	SW35	SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	SW38	5W39 5	W51 5	W52 5	5W53	LEST CONDITIONS
		·								***	① Set the subaddress (17) data to (07). ② Measure the picture period voltage of pin 43 when
											the cutoff (subaddress 0C) data are changed to maximum (FF), center (80), and minimum (00), and
F	Cutoff Voltage	<		<	<	<	<			(calculate the amount of change of maximum and
-10		τ.	1	۲,	1	τ	1		Δ	,	
							***************************************				$\@3$ In steps $\@3$ and $\@3$ above, make the following changes
											and remeasure :
											Change the subaddress (0D) data and measure pin 42,
											Change the subaddress (0E) data and measure pin 41.
											① Input signal 1 ($f_0 = 100$ kHz, picture period
											amplitude = $0.2V_{p-p}$) to pin 53.
											② Measure the picture period amplitude of pin 42 when
											the drive (subaddress-09) data are changed to
	-										maximum (FE), center (80), and minimum (00).
							,				Calculate the maximum and minimum amplitude
ŀ	Drive Adjustment	•		4	•	+	•	•		<	ratios for the drive center using decibel conversion.
Ξ	Variable Range	-		_	_	_		·-			(DRG+, DRG-)
											♠ In steps ① to ③ above, change the subaddress (0A)
									*******		data, measure pin 41, and repeat the calculations.
									····		
			****								⑤ In steps ① to ③ above, set data of the LSB of
											subaddress (09) to 1, measure pin 43, and repeat the
											calculations. (DRR +, DRR -)
											① Set the subaddress (00) data to (FF).
⊤ 12		←	←	←	←	←	←	<u></u>	←	U	② Measure the picture period voltages of pins 43, 42,
	מווומואו מוווומ										and 41. (MURD, MUGD, MUBD)
											① Set the subaddress (10) data to (08).
۱- د		-	+	4	+	*		÷	←	←	② Measure the picture period voltages of pins 43 and 42
<u> </u>	Blue Back	_		_	_	_			_	_	and the picture period amplitude of pin 41.
											(BBR, BBG, BBB)

TA1276AN - 55

NOTE			- 1	1:-))	-			֝֡֝֝֝֝֝֡֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֡֓֓֓֡֓	IEST CONDITIONS (UNLESS OTHERWOISE STATED, VCC1 = 30, VCC3 / VCC3 / DEF VCC = 30, TA = 23 ± 3 C)
	PARAMETER	-			SWITCHING MODE	G MOD	ш		-	SINOITIQUIO 1331
		SW33		4 SW35	SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	38 SW3	9 SW51	SW52	SW53	LEST CONDITIONS
			_							① Apply 6.5V from an external power supply to pin 45.
									<u>~</u>	② Set the subaddress (16) data to (00).
										Set the brightness to the maximum.
										③ Measure the voltage of pin 43. (VABL10)
		·····								Apply 4.5V from an external power supply to pin 45.
									<u>~</u>	⑤ Change the data of subaddress (16) to (00), (04), (08),
ŀ	:: 		_	<	<		• •	α		(0C), (10), (14), (18), and (1C), and repeat step ③ for
91	ABL Gam	-		1			<u> </u>	2)	each of these data.
										(VABL11, VABL12, VABL13, VABL14, VABL15, VABL16,
		-								VABL17, VABL18)
									<u> </u>	ABLG1 = VABL11 - VABL10, ABLG5 = VABL15 - VABL10
										$ABL_{G2} = VABL12 - VABL10$, $ABL_{G6} = VABL16 - VABL10$
										$ABL_{G3} = VABL13 - VABL10$, $ABL_{G7} = VABL17 - VABL10$
										ABLG4 = VABL14 - VABL10, ABLG8 = VABL18 - VABL10
										① Adjust the brightness so that the picture period
										voltage of pin 43 is set to 2.5V.
										② Set the subaddress (16) data to (01).
						-				③ Measure the picture period voltages of pins 43, 42,
										and 41.
	7072 +::«+::0 a0a		+	+	÷	÷	*	+	·	
	rde Output Mode	10	_	_	_		_	_		4 Change the subaddress (16) data to (02) and repeat
										step ③.
										(V43G, V42G, V41G)
						***			<u>~</u>	(5) Change the subaddress (16) data to (03) and repeat
										step @.
										(V43B, V42B, V41B)

TA1276AN - 57

1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C) TEST CONDITIONS		 ① Input a ramp waveform to pin 53 and adjust the input amplitude so that the picture period amplitude of pin 43 is 2.3V_{p-p}. ② Adjust the drive adjustment data so that the picture period amplitudes of pins 41 and 42 are equal to that of pin 43. ③ Set the subaddress (14) data to (10). ④ From pins 43, 42, and 41, calculate the RGB γ start point and its gradient (decibel conversion) in relation to the off point in accordance with Fig.1. 	Output amplitude 1000 IRE A (Gradient 2)
TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ±3°C) SWITCHING MODE TEST CONDITIONS	33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53		4 8 4 4 4 4 4 4 4 4 4 4 4 4 4
PARAMETER	SW33		RGB γ Characteristics A
NOTE			119

			e drive amplitudes 43. pin 32. in 43.	o pin 32. (7F). 5, increase ure the 43 is	o pin 32. (7F). 5, decrease ure the
() ファーファーファー	TEST CONDITIONS	LEST CONDITIONS	 ① Input signal 1 (f₀ = 100kHz, picture period amplitude = 0.2V_{p-p}) to pin 53 and adjust the drive adjustment data so that the picture period amplitudes of pins 41 and 42 are equal to that of pin 43. ② Apply 5V from an external power supply to pin 32. ③ Input signal 1 (f₀ = 100kHz, picture period amplitude = 0.2V_{p-p}) to pin 35. ④ Measure the picture period amplitude of pin 43. (V43R) ⑤ As in steps ② and ③ above, input to pin 33 and measure pin 41. (V42G, V41B) ⑥ GTXR = V43R / 0.2 ⑥ TXG = V42G / 0.2 ⑥ GTXP = V41P / 0.2 	① Repeat step ① of T20. ② Apply 5V from an external power supply to pin 32. ③ Set the RGB contrast data to the maximum (7F). ④ Connect an external power supply to pin 35, increase the voltage gradually from 3.0V, and measure the picture period amplitude voltage when pin 43 is clipped. ⑤ As in steps ③ and ④ above, input to pin 34 and measure pin 42, then input to pin 33 and measure pin 41.	 ⊕ Repeat step ① of T20. ② Apply 5V from an external power supply to pin 32. ③ Set the RGB contrast data to the maximum (7F). ♠ Connect an external power supply to pin 35, decrease the voltage gradually from 4.5V, and measure the voltage when pin 43 is clipped. ⑤ As in steps ③ and ④ above, input to pin 34 and measure pin 42, then input to pin 33 and measure pin 41.
, ,				← ←	← ←
ISE SI		/34 SW35 SW37 SW38 SW39 SW51 SW52 SW53		←	←
THERW	j	SW51	ω	←	←
ESS O	SWITCHING MODE	SW39	∢	←	-
S (UNI	HING	SW38	∢	←	←
NOLLI	SWITC	SW37	∢	←	←
SON		SW35	A O C	4	
TEST		SW34	A P B	. ✓	←
		SW33 SW	A O B	∢ ′	←
	PARAMETER		Analog RGB Gain	Analog RGB White Peak Slice Level	Analog RGB Black Peak Limiter Level
	NOTE		T20	T21	T ₂₂ Anal

_																											
TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ± 3°C)	SNOITIGINGS TSET	LEST CONDITIONS	① Repeat step ① of T20.	② Apply 5V from an external power supply to pin 32.	③ Input signal 1 (f ₀ = 100kHz, picture period	amplitude = $0.2V_{p-p}$) to pin 35.	Measure the picture period amplitude of pin 43 when	the RGB contrast data change to the maximum (7F),	the center (40), and the minimum (00).	(vuTXRMAX, vuTXRCNT, vuTXRMIN)	⑤ Calculate the maximum and minimum amplitude	ratios using decibel conversion. (DRG+, DRG-)	⑥ As in steps ③, ④ and ⑤ above,	input to pin 34 and measure pin 42,	then input to pin 33 and measure pin 41.	① Repeat step ① of T20.	② Input signal 2 to pins 33, 34, and 35.	③ Apply 5V from an external power supply to pin 32.	Adjust the signal 2 amplitude A so that the picture	period amplitude of pin 43 is 0.5V _{p-p} .	(5) Measure the picture period voltage of pins 43, 42, and	41 when the RGB brightness change to the maximum	(7F), the center (40), and the minimum (00).	(VbrTXMAX, VbrTXCNT, VbrTXMIN)	① Using the results obtained from T ₂₄ , calculate the	RGB brightness sensitivity for pins 43, 42, and 41.	GbrTX = (VbrTXMAX – VbrTXMIN / 128
TATED,		SW33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53							∢											←						-	
/ISE S		SW ₅₂							8											←						←	
HERW		SW51							Ω											←						←	
SS OT	NODE	SW39							⋖											·						←	
(UNLE	ING	W38							⋖											←						←	
FIONS	SWITCHING MODE	W37							⋖											·						←	
IGNO	S	W35 S						⋖	ō	В									⋖	ō						—	
TEST (W34 S	-					⋖	ō	8									⋖	ō	20						
		W33 S						⋖	ō	8									⋖	or	В					←	
	PARAMETER							RGB Contrast	Adjustment	Characteristics								-	Analog Rus	Brightness	Adjustment	Characteristics				Analog Kub	Brightness sensitivity
	NOTE								T23											T24						T25	

			TEST	COND	TIONS	(UNLE	SS OTF	IERWIS	SE STAT	ED, V	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER			:	SWITCHING MODE	S S S	IODE			Τ,	TEST CONDITIONS
		SW33	SW34	SW35	SW37 .	5W38 5	W39 S	W51 S	SW33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	V53	
											① Repeat step ① of T20. ② Apply 5V from an external power supply to pin 32.
										(4)	③ Input signal 1 (f ₀ = 100kHz, picture period
											amplitude = $0.2V_{p-p}$) to pin 35.
										A	Measure the picture period amplitude of pin 43.
										<u> </u>	Measure the picture period amplitude of pin 43 when A
ŀ	Text ACL	•	•		•						-0.5V DC is applied to pin 45 from an external
126	Characteristics	4	∢	Σ	4	∢	∢	<u> </u>	 n	۲	source. (vTXACL2)
										w)	(6) Measure the picture period amplitude of pin 43 when
									,		(vTXACL3)
										O	(7) TXACL1 = -20 x 80g (VTXACL2/VTXACL1)
										w	(8) Set the subaddress (10) data to (01) and repeat the
			,								
											(i) Input signal 1 (fn = 100kHz, picture period
								***************************************			amplitude = $0.2V_{0-0}$) to pin 53 and adjust the drive
											adjustment data so that the picture period amplitudes
											of pins 41 and 42 are equal to that of pin 43.
										(CA)	② Apply 5V from an external power supply to pin 36.
										(J)	③ Input signal 1 (f ₀ = 100kHz, picture period
	-						-				amplitude = $0.2V_{p-p}$) to pin 39.
ŀ		•	•	<	1 :	1 ;	1 1	-	•		Measure the picture period amplitude of pin 43.
127	Analog UsD Gain	-	_	4	j c	5 6	5 °	_	_		(V43R)
					Δ	Ω	<u> </u>			((43)	⑤ As in steps ③ and ④ above,
											input to pin 38 and measure pin 42,
											then input to pin 37 and measure pin 41.
	-										(V42 _G , V41 _B)
								•		(U)	© GOSDR = V43R / 0.2
			. ".,								$GOSD_G = V42_G / 0.2$
	,										$GOSD_{B} = V41_{B}/0.2$
										-	The state of the s

TA1276AN -- 61

			TEST	CONDI	TIONS	(UNLE	SS OTH	ERWIS	E STATEL	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER			,	SWITCHING MODE	ING R	10DE			SINCITICINCY FOLK
		SW33	SW34	SW35	SW37	SW38 5	3W39 S1	W51 S1	SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	3 CONDITIONS
							-			① Repeat step ① of T27.
										② Apply 5V from an external power supply to pin 36.
										® Apply external voltage to pin 39, increase the voltage
										gradually from 0.0V, and measure the picture period
	+ 1/W COO									amplitude voltage when pin 43 is clipped. (VOSD1R)
T28	Analog OSD Wille	∢	⋖	⋖	∢	∢	⋖		В В	♠ As in step ③ above,
										input to pin 38 and measure pin 42.
										Input to pin 37 and measure pin 41.
										⑤ Set the subaddress (10) data to (04) and repeat the
							, .			measurements in steps @ and .
		,								(Vosdzr, Vosdzg, Vosdzb)
										① Repeat step ① of T27.
										② Apply 5V from an external power supply to pin 36.
										Apply external voltage to pin 39, decrease the voltage
} -		•	•	+	·	•	+		÷	gradually from 4.5V, and measure the voltage when
129	Peak limiter Level	_		_	_		_	_		pin 43 is clipped.
										4 As in step 3 above,
								•		input to pin 38 and measure pin 42.
				. *						Input to pin 37 and measure pin 41.
										① Repeat step ① of T27.
	#									② Apply 5V from an external power supply to pin 36.
T30		←		←	←	—	<u></u>	<u></u>	← ←	③ Measure the picture period voltages of pins 43, 42,
	- 00 lage									and 41.
										(Vosddcr, Vosddcg, Vosddcr)

			TEST	COND	TIONS	UNLES	S OTH	ERWISI	E STATED	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER				SWITCHING MODE	ING M	ODE			SINCILIDING LIBER
		SW33	SW34	SW35 5	3W37 S	W38 51	N39 SV	N51 SV	SW33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	
							-	-		① Repeat step ① of T27.
						-			-	Set the subaddress (10) data to (02).
										② Apply 5V from an external power supply to pin 36.
										\odot Input signal 1 (f ₀ = 100kHz, picture period
										amplitude = $0.2V_{p-p}$) to pin 39.
										Measure the picture period amplitude of pin 43.
										(vOSDACL1)
						,				⑤ Measure the picture period amplitude of pin 43 when
l	OSD ACL	•			•					-0.5V DC is applied to pin 45 from an external
31	Characteristics	۲	∢	∢	∢			Δ	ز 	source. (vOSDACL2)
										© Measure the picture period amplitude of pin 43 when
										-1V DC is applied to pin 45 from an external source.
						-				(VOSDACL3)
								,		\bigcirc OSDACL1 = -20 × log (vOSDACL2 / vOSDACL1)
										OSDACL2 = $-20 \times log (vOSDACL3 / vOSDACL1)$
										® Change the subaddress (10) data to (00) and repeat
										the measurements in steps \oplus to \oplus .
	-						•			(OSDACL3, OSDACL4)
								-		

			TEST	COND	TIONS	(UNLE	SS OT	FRWIS	E STATE	TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
NOTE	PARAMETER				WITCH	SWITCHING MODE	10DE			TECT COMPLETIONS
		SW33	SW34	SW35	SW37	SW38 5	3W39 S	W51 S	33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	
	Color Difference Block									Color difference block common test conditions SW ₁₃ : A, SW ₁₅ : C, SW ₁₈ : ON, SW ₂₀ : ON, SW ₂₃ : ON, SW ₂₄ : ON, SW ₂₅ : ON
										① Change the G and B drive data to the value resulting
					,					
								*		② Set the brightness to maximum, set the subaddress (0F) data to (30), and set the subaddress (10) data to
										(20)
										③ Input signal 3 (f ₀ = 100kHz, picture period
	Color Difference							٥	Δ	
Α1	Contrast Adjustment	⋖	⋖	⋖	⋖	⋖	⋖	ć 5	or C	€
	Characteristics							ω	ш	center (40), and the minimum (00)
										(vuCYMAX, vuCYCNT, vuCYMIN)
										(5) Calculate the unicolor maximum and minimum
	-									amplitude ratios using decibel conversion. (AvuCY)
										© Repeat steps ③, ④, and ⑤ above, inputting the
										picture period amplitude 0.2V _{p-p} to pin 52 and
					- 1					measuring pin 41.
										① Measure the voltage of pin 51.
										Set the brightness to maximum, set the subaddress
										(0F) data to (30), and set the subaddress (10) data to
										\bigcirc Input signal 3 (f ₀ = 100kHz, picture period
										Measure the picture period amplitude of pin 43 when
<	Color Adjustment	+	·	+	·	·	·	←	-	
7 H	Characteristics	_	_		_	_				
										♠ Calculate the color maximum and minimum amplitude
	-							,		ratios for the center using decibel conversion.
				· ·						
	-		-						-	⑤ Repeat steps ② to ④ above, inputting the picture
										period amplitude 0.1V _{p-p} to pin 52 and measuring pin
										41.
TA1276AN - 64	ΔN 6Δ				İ					

TEST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ±3°C)	TEST CONDITIONS		① Set the subaddress (10) data to (20).	② Input signal 3 ($f_0 = 100 \text{kHz}$, picture period	amplitude = $0.2V_{p-p}$) to pin 51.	Measure the picture period amplitude of the	waveform output from pin 43. (vHTARY)	Apply 1.5V from an external power supply to pin 47.	Measure the picture period amplitude of the	waveform output from pin 43. (vHTBRY)		7 Repeat steps (1) to (5) above with pin 42.	GHTGY = vHTBGY / vHTAGY	® Repeat steps ① to ⑤ above, inputting signal to pin	52 and measuring pin 41.	GHTBY = vHTBBY/vHTABY
STATED,		52 SW53								ر 						
NISE		I SWE	_					-	∢ ;	ō -	<u> </u>					_
THER		SW5						•	∢ ;	ō -	20					
.SS 0	JODE	SW39							<	∢						
S (UNLE	HING N	SWITCHING MODE SW ₃₃ SW ₃₄ SW ₃₅ SW ₃₈ SW ₃₈ SW ₃₉ SW ₅₁ SW ₅₂ SW ₅₃							•	∢						
NOIT	SWITC									∢						
TEST COND									,	∢						
						·				∢						
		SW23 5								⋖						
	PARAMETER	Īα								Tone Characteristics						
	NOTE									A 3						

			TEST	CONDI	TIONS	(UNLE	SS OTH	IERWIS	E STAT	TED, V	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} /V _{CC3} /DEF V _{CC} = 9V, Ta = 25±3°C)
NOTE	PARAMETER			S	SWITCHING MODE	ING M	ODE				SNOITIGINGS ISSE
		SW33	SW34	SW35 !	3W37 S	W38 S	W39 S	W51 S	SW33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	N53	LEST CONDITIONS
											① Set the subaddress (10) data to (20). ② Input signal 2 to pin 51.
				**********						<u> </u>	(3) When the subaddress (07) data are: (80) $-\gamma$ OFF
											$(82) - \gamma 10N$
											$(84) - \gamma$ 20N
						-					(86) – y30N
											measure the changes in the amplitude level of the pin
								**************			43 output signal at an increase the amplitude A of
					···-					<u> </u>	\oplus signal 2 and prot the thankerships \oplus Calculate the γ ON gradient Δ , using $\nabla \gamma$, which
Ā	Color γ	∢	⋖	⋖	⋖	4	≪		<u> </u>	, ,	
,	Characteristics		•						,		become effective, and the gradient of the linear section with γOFF as (1).
					*******						уове
	-										
											NO.
			***************************************								tioni 13 uid
										<u> </u>	① Measure the voltage of pin 51. ② Set the subaddress (10) data to (20)
										, ህ	③ Input signal 2 (picture period amplitude = 0.4V _{p-p}) to
<	Color Limiter	•	←	←	+						pin 52.
Ĉ	Characteristics		_	_		_					Measure the picture period amplitude of the pin 43
											output signal when the subaddress (07) data are (80)
											(CLTO, CLT1)
							1	1			

11276AN - 66

			ق
TEST CONDITIONS (UNLESS OTHERWISE STATED, $V_{CC1} = 5V$, $V_{CC2} / V_{CC3} / DEF$ $V_{CC} = 9V$, $Ta = 25 \pm 3^{\circ}C$)	TEST CONDITIONS	 ① Set subaddress (10) data to (20). ② Input signal 2 (picture period amplitude=0.2V_{p-p}) to pin 52. ③ Adjust the color control so that the picture period amplitude output from pin 41 is 1.2V_{p-p}. ④ Measure the picture period amplitude of the pin 41 output signal when the subaddress (06) data are (FF). (V41) ⑤ HBC1=(1.2-V41)/1.2 	(i) Input IQ demodulated flesh-bar signals (15°-step rainbow signals in the range –30° to +240°) to pin 52 (Q signal) and pin 51 (I signal) as 0.2V _{p-p} . Set the brightness to maximum. (iii) Set subaddress (10) data to (00). (iii) Measure the signals output from pins 41 and 43 and switch to subaddress (10) data to (06). Measure the output signals and calculate the variation characteristics of the color vector phase. (iii) Draw the vector variation characteristics curve showing the on state from the off state and calculate the gradient in the vicinity of the I axis as Fa33. Subaddress (08) Data (80) off Color vector phase [3] Data (81) on
ATED,	SW53	U	←
/ISE ST,	SW33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	٧	←
THERW	SW ₅₁	В	∢
SWITCHING MODE	SW39	۷	-
S (UNI	SW38	∢	←
NOITIC	SW37	⋖	←
CON	SW35	4	-
TEST	SW34	A	←
	SW33	A	←
DARAMETER	FANAINIETEN	High-Brightness Color Gain	Flesh Color Characteristics
MOTE	2	A6	A 7

:	TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ± 3°C)	ST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC}	JDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC}	VS (UNLESS OTHERWISE STATED, $V_{CC1} = 5V$, V_{CC2}/V_{CC}	ESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC	ERWISE STATED, VCC1 = 5V, VCC2 / VCC	STATED, VCC1 = 5V, VCC2 / VCC), VCC1 = 5V, VCC2 / VCC	3/DEF V _{CC} = 9V, Ta = 25 ± 3°C)
PARAMETER SWITCHING MODE	SWITCHING MODE	SWITCHING MODE	SWITCHING MODE	CHING MODE	MODE				TEST CONDITIONS
SW33 SW34 SW35 SW37 SW38 SW39 SW51 SW52 SW53		34 SW35 SW37 SW38 SW39 SW51 SW52 SW53	35 SW37 SW38 SW39 SW51 SW52 SW53	7 SW38 SW39 SW51 SW52 SW53	SW39 SW51 SW52 SW53	V51 SW52 SW53	52 SW53	8	
① Connec	① Connec	① Connec	① Connec	① Connec	O Connec	① Connec	① Connec	① Connec	① Connect SG to Y-IN and input a 4MHz frequency sine
wave at	wave at	wave at	wave at	wave at	wave at	wave at	wave at	wave at	wave at 20mV _{p-p} .
② Set the	② Set the	② Set the	② Set the	② Set the	② Set the	② Set the	② Set the	② Set the	② Set the subaddress (02) data to (01).
③ Set the	③ Set the	③ Set the	③ Set the	③ Set the	③ Set the	3 Set the	3 Set the	3 Set the	③ Set the subaddress (10) data to (20).
(4) Set the	(4) Set the	(4) Set the	(4) Set the	(4) Set the	(4) Set the	4 Set the	4 Set the	4 Set the	④ Set the subaddress (11) data to (02).
S Read t	. (5) Read t	(\$) Read t	(5) Read t	⑤ Read t	⑤ Read t	(5) Read t	⑤ Read t	(5) Read t	Read the 4MHz amplitude output to pin 43.
(VCDE0)	(VCDEC	OSCOPICAL (VCDE	(VCDEC	(VCDEC	(VCDEC	(VCDEC	(VCDEC	(VCDE	
(a) Input si	(a) Input si	® Input si	® Input si	® Input si	® Input si	(® Input si	® Input si	6 Input si	Input signal 2 (picture period amplitude = $0.3V_{p-p}$) to
Color Detail Emphasis A A A A A A A A A B A pin 51.	A A A B A A	A A A B A	A A A A	A B A	A 8	A B	⋖	pin 51.	
② Set the	(a) Set the	(7) Set the	② Set the	(d) Set the	② Set the	(7) Set the	@ Set the	(7) Set the	🗇 Set the subaddress (02) data to (81).
® Read th	8 Read th	8 Read th	8 Read th	8 Read th	8 Read th	® Read th	8 Read th	® Read th	Read the 4MHz amplitude output to pin 43.
(VCDE1)	(VCDE1)	(VCDE1)	(VCDE1)	(V _{CDE1})	(VCDE1)	(V _{CDE1})	(VCDE1)	(V _{CDE1})	(VCDE1) (mV _{P-P})
(9) Set the	(9) Set the	(g) Set the	(a) Set the	(9) Set the	Set the	(®) Set the	® Set the	(9) Set the	Set the subaddress (0A) data to (81) and read the
amplitu	amplit	amplit	amplit	amplit	amplit	amplit	amplit	amplit	amplitude of frequency Fp output to pin 43.
(V _{CDE}	(V _{CDE}	(V _{CDE}	(VCDE	(V _{CDE}	(V _{CDE}	(V _{CDE}	(V _{CDE}	(V _{CDE}	(VCDE2) (mV _{p-p})
@ CCD0	=0CD9 (III)	- 0CD0 - (4) eCD0 -	@ @CD0=	@ CCD0=	= 0CD0 =	= OCD0 =	@ CCD0 =	@ ecdo=	$\textcircled{0} \text{ GCD0} = 20 \times \ell \text{ og } (V_{CDE1} - V_{CDE0} / 20)$
C=1009 CCD1=2	GCD1=2	GCD1=2	GCD1=2	GCD1=2	GCD1=2	GCD1=2	GCD1=2	GCD1=2	GCD1 = 20 x foa (VCnE2 - VCnEn / 20)

TA1276AN - 69

L		_	TEST	CONO	NOLL	S (LINI	FSS O	TEST CONDITIONS (LINIESS OTHERWISE STATED VCc1 = 5V VCc2/VCc2/DEF Vcc = 9V Ta = 25 + 3°C)
NOTE	PARAMETER		SW	TCHIN	SWITCHING MODE	DE		
		SW16	SW17	SW 18	SW17 SW18 SW20 SW23 SW25	SW23	SW25	TEST CONDITIONS
								(15) - 11
D ₃	Range of Curve Correction	۵	U	NO	NO N	4	Z O	(Curve correction pin)
								Pin 23 Pin 24=3.5V
								(3) ————————————————————————————————————
								— <i>t</i>
								Under the same conditions as those for D ₃ , measure phase variation of the pin 23 (H.out) waveform when subaddress (0B) data D ₇ to D ₃ are varied by (00000) to (11111).
	Horizontal Screen							Pin 17 waveform
D4	Phase Adjustment Range	←	←	←	←	←	←	Pin 23 — AHSFT Input signal When (11111)

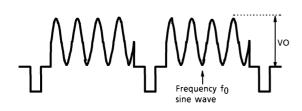
TEST CONDITIONS (UNLESS OTHERWISE STATED, $V_{CC1} = 5V$, $V_{CC2} / V_{CC3} / DEF$ $V_{CC} = 9V$, $Ta = 25 \pm 3^{\circ}C$)	TEST CONDITIONS	(15) — 11 — (5) mc inputi Pin 15 — (HD.OUT) (HD.OUT)	Apply a 50Hz composite video signal to TP15, then measure the phase difference CP5 and the pulse width CPW of the pin 2 (SCP) waveform in relation to the pin 17 (HD.out) waveform. The pin 15 pin 15 pin 15 pin 15 pin 15 pin 15 pin 17 (PD.out) waveform. Second Pin 2 pin
OTHERV	SWITCHING MODE	ON	←
JNLESS	DDE V22 SW	0	←
) SNOI	SW12 SW20 SW23	Z O	←
CONDIT	SWITCH SW18 S	Z O	←
TEST		U	· ←
	SW16	Δ	←
	PARAMETER	Clamp Pulse Start Phase Pulse Width of Clamp Pulse	Gate Pulse Start Phase Pulse Width of Gate Pulse
	NOTE	DS	De

TA1276AN - 71

TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} / V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ± 3°C)	TEST CONDITIONS	Under the same conditions as those for D ₆ , measure the phase difference HP ₈ and HP ₈ Of the horizontal blanking pulse. Also measure HP ₈ of 60Hz. Also measure HP ₈ at 60Hz. Pin 17 Waveform Pin 2 Output waveform HP ₈ HP ₈ HP ₈	(1) TP15 Apply a 50Hz composite video signal to TP15, then measure the phase difference HPs and the pulse width HPw/VHD of the pin 17 (HD out) waveform in relation to the pin 20 (AFC1 filter) (2) Fin 15 (AFC1 filter)
LESS O	SW17 SW18 SW20 SW23 SW25	N O	←
NO SN	ODE 0 SW2	. ∢	←
DITIO	SWITCHING MODE	N _O	-
L CON	VITCH 7 SW ₁	Z 0	←
TES	SV S SW1	U	←
	SW16	۵	←
	PARAMETER	Horizontal Blanking Pulse Start Phase Pulse Width of Horizontal Blanking Pulse	HD Output Start Phase HD Output Pulse Width HD Output Amplitude
	NOTE	D7	D8

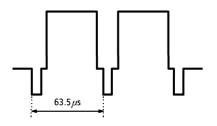
TA1276AN-72

TEST CONDITIONS (UNLESS OTHERWISE STATED, V _{CC1} = 5V, V _{CC2} /V _{CC3} / DEF V _{CC} = 9V, Ta = 25 ±3°C)	TEST CONDITIONS	Apply a 50Hz composite video signal to TP15, then measure the phase difference VP50S1 and the pulse width VP50S2 of the pin 2 (5CP) waveform in relation to the pin 17 (sync input) waveform.	Apply the same conditions as those for Dg except change the input signal to a 60Hz composite video signal and measure the phase difference VP60S and pulse width VP60W.	Input a 50Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps, and measure the vertical pull-in range.	Set D ₅ to D ₃ of subaddress (17) to (001), vary the vertical frequency of a 60Hz composite video signal input to pin TP15 in 0.5H-steps, and measure the vertical pull-in range.	Input a 50Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps, and measure the number of Hs when D ₂ of the 1st byte changes from 0 to 1 in bus read mode. Also check that D ₁ of the 1st byte is 0 when $1V = 312.5H$, when D ₁ is 1 in bus read mode, and $1V < 311.5$ or $1V > 313.5H$.	Input a 60Hz composite video signal to pin TP15, vary the vertical frequency of this signal in 0.5H-steps, and measure the number of Hs when D ₂ of the 1st byte changes from 1 to 0 in bus read mode when. Also check that D ₁ of the 1st byte is 0 when $1V = 262.5H$, D ₁ is 1 in bus read mode, and $1V < 261.5$ or $1V > 263.5H$.
SS O	SW25	N O	←			←	
(UNLE	SW23	∢	←			(
TIONS	SWITCHING MODE SW17 SW18 SW20 SW23 SW25	N _O				(-	-
CONDI	TCHIN SW18	N _O				←	
TEST	SWI SW17	v	←			←	
	SW ₁₆	۵	←			←	
	PARAMETER S	Vertical Blanking Pulse Start Phase (1) Vertical Blanking Pulse End Phase (1)	Vertical Blanking Pulse Start Phase (2) Vertical Blanking Pulse End Phase (2)	Vertical Pull-In Range (1)	Vertical Pull-In Range (2)	Vertical pull-in range (3)	Vertical pull-in range (4)
	NOTE	6 <u>0</u>	D10			D11	J

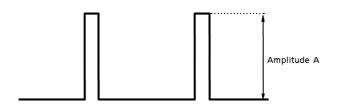

114 210

			TEST	CONI	NOITIO	S (UNI	ESS O	THERW	ISE ST	EST CONDITIONS (UNLESS OTHERWISE STATED, VCC1 = 5V, VCC2 / VCC3 / DEF VCC = 9V, Ta = 25 ± 3°C)
				S	VITCH	SWITCHING MODE	DE			
VOTE	PARAMETER	SW16	SW17	SW18	3 SW20	SW16 SW17 SW18 SW20 SW23 SW25 SW35 SW35 SW35 SW35 SW35 SW35 SW35 SW3	SW25	SW33 SW34 SW35 SW37 SW37 SW38	#32 #36 #47	TEST CONDITIONS
	RGB Output Vertical Blanking Pulse Start Phase (1)	_		2	2	٥	Z	٥	Gro-	(15) 167 (Sync input)
7	RGB Output Vertical Blanking Pulse End Phase (1)) ·)	<u>.</u>	<u>.</u>)		·)		pun	(R output) the pin 15 (sync input) waveform. Similarly, measure pins 42 and 41.
, ,	RGB Output Vertical Blanking Pulse Start Phase (2)	*	+	*	-	←	←	+	+	Apply the same conditions as those for D ₁₂ except change the input signal to a 60Hz composite video signal and measure the
<u>7</u> 7	RGB Output Vertical Blanking Pulse End Phese (2)		_		-			_	_	phase difference VP60S1 and pulse width VP60S2.

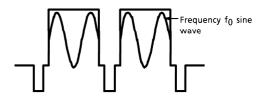
TA1276AN - 74

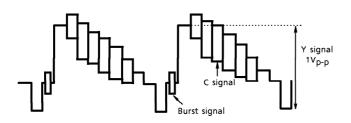

CHROMA TEST SIGNALS

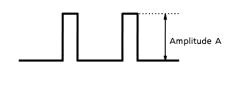
① Input signal C-1

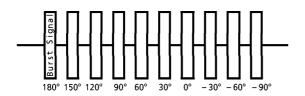


TEXT/COLOR DIFFERENCE TEST SIGNALS

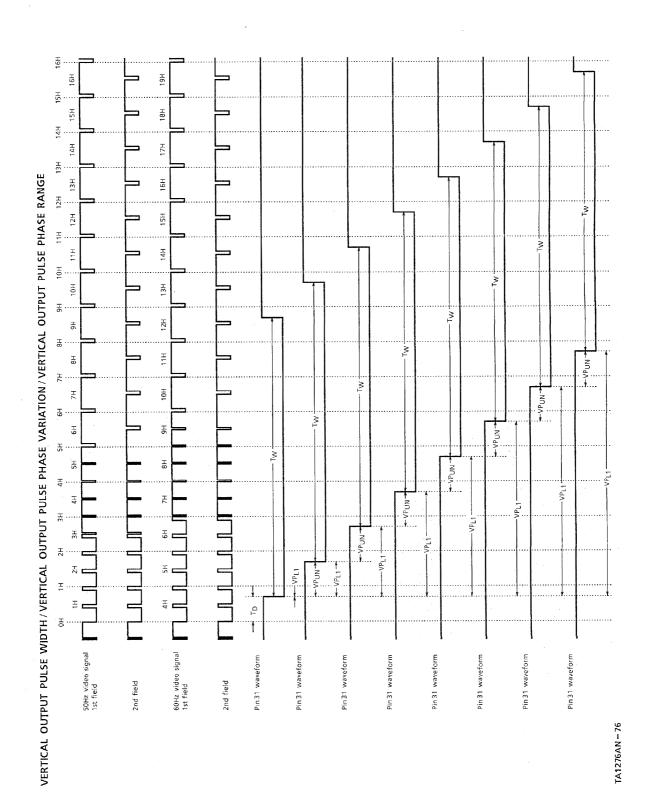

① Video signal


2 Input signal C-2

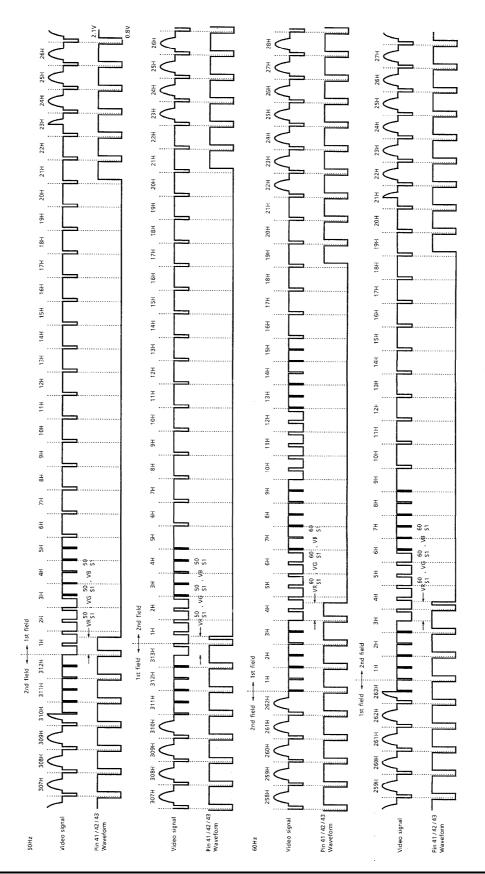

2 Input signal 1

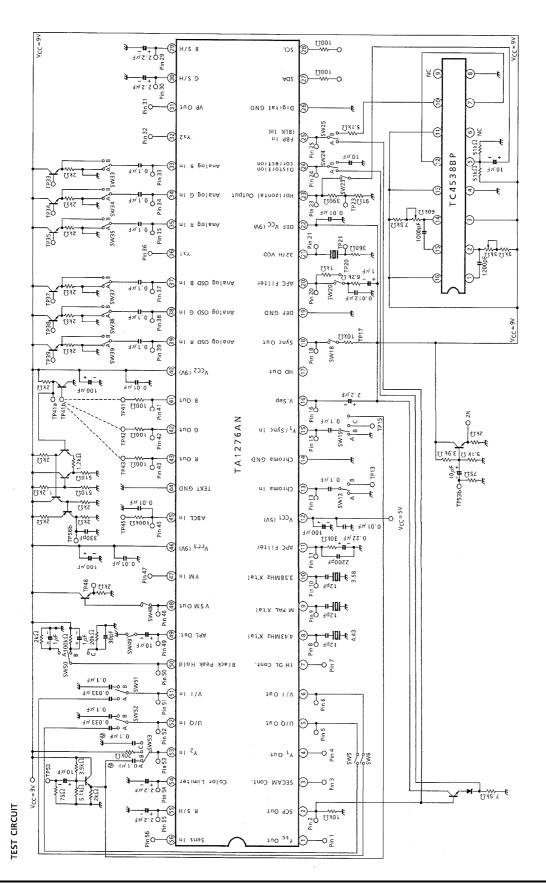

3 Input signal C-3

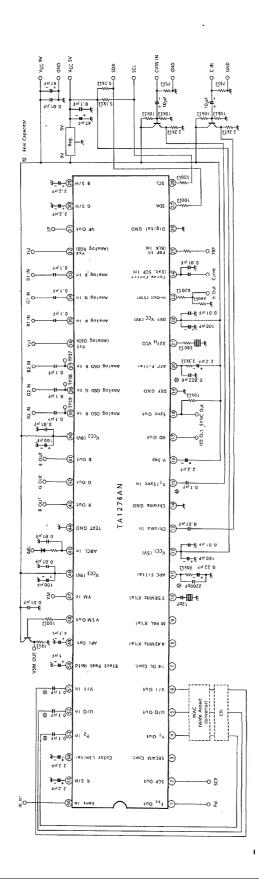
3 Input signal 2



4 Input signal C-4

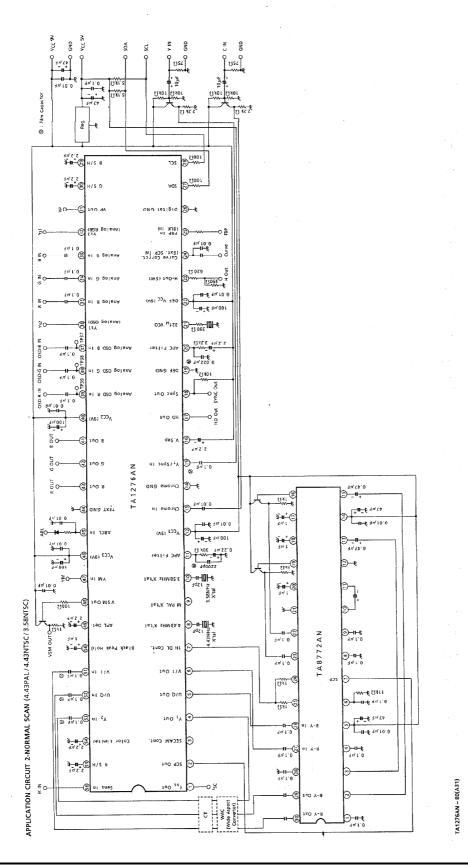

4 Input signal 3

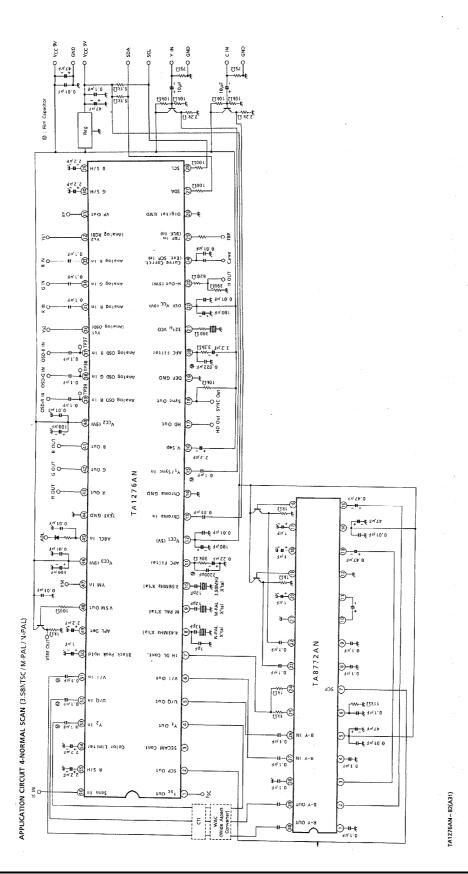


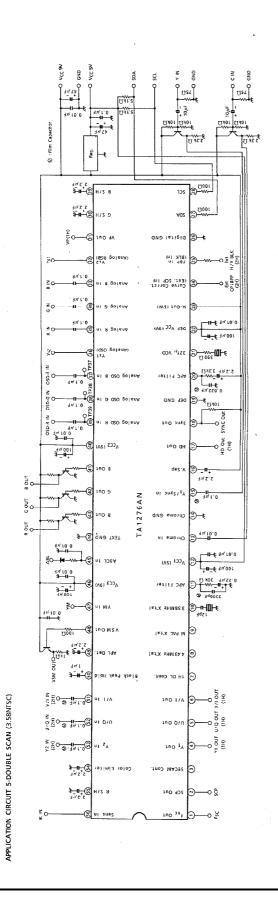


1998-07-24 76/85

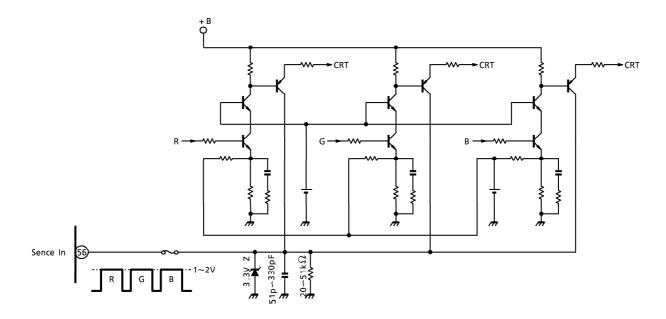
RGB VERTICAL BLANKING PULSE START PHASE / END PHASE



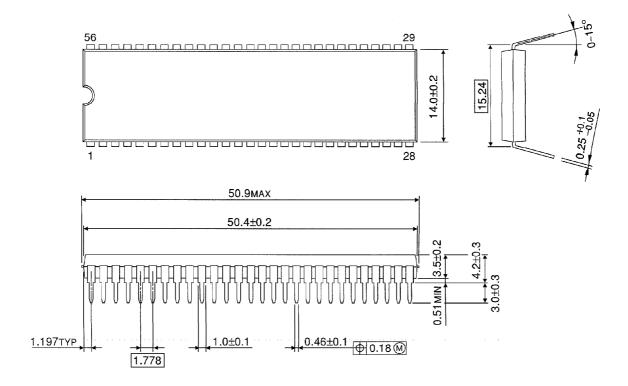



APPLICATION CIRCUIT 1-NORMAL SCAN (3.58NTSC)

276AN - 79(A31)



1998-07-24 83/85


TA1276AN - 83(A31)

AKB APPLICATION CIRCUIT

OUTLINE DRAWING SDIP56-P-600-1.78

Unit: mm

Weight: 5.55g (Typ.)